Methods to study gene expression in live cells over time have been limited. One known method is the luciferase assay, which measures the luminescence of luciferase by coupling its expression to the promoter of a gene under study. This luminescence in cells can be measured over time by a luminometer. One major drawback of the luminometer, however, is that it can only measure the luminescence of a group of cells, and cannot follow the differences that may exist among individual cells. A novel luminescence microscope allows the visualization of individual luminescent cells over time through CCD photography. In this study, live single cells of the rat hippocampus were observed under the microscope for luciferase expression driven by the c-fos promoter. We showed that the cell body and neurite areas within a single neuron exhibited differences in luminescence. Because this microscope could detect differences among subcellular regions of single-cell, it may be a promising novel tool to study polarized cells like neurons, and to elucidate proteins involved in neuronal processes such as dendritic/axonal targeting and synaptogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2008.01.075DOI Listing

Publication Analysis

Top Keywords

luminescence microscope
12
cells
8
cells time
8
luminescence
6
single-cell imaging
4
imaging c-fos
4
expression
4
c-fos expression
4
expression rat
4
rat primary
4

Similar Publications

Zinc is an important physiological cation, and its misregulation is implicated in various diseases. It is therefore important to be able to image zinc by non-invasive methods such as Magnetic Resonance Imaging (MRI). In this work, we have successfully synthesized a novel Gd3+-based complex specifically for Zn2+ sensing by MRI.

View Article and Find Full Text PDF

In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow.

View Article and Find Full Text PDF

Biogenic Synthesis of Silver Nanoparticles for Nanosensor-Based Mercury Detection.

Luminescence

December 2024

Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.

The production of nanoparticles via green methods is a developing study domain due to potential environmental applications. The green synthesis method is very easy, less toxic and eco-friendly when compared to the chemical synthesis method. This study addresses the silver nanoparticle synthesis utilizing the Acorus calamus leaf extract, which was then employed for environmental applications.

View Article and Find Full Text PDF

Focused ultrasound (FUS) is a recognized tool that can be used clinically for the thermal ablation of tumors. However, excessive heat can cause side effects on the ultrasound transmission path and normal tissues around the tumor. To address the issue, this work detected for the first time the effect of microscopic heating of nanoparticles under the action of FUS through the luminescence intensity ratio (LIR) and luminescence lifetime of temperature-responsive lanthanide-doped nanoparticles.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the accuracy of laser fluorescence (LF) readings in detection of caries removal by various techniques (CRTs).

Methods: A hundred and eighty extracted human molar teeth included in the study which were scored 3, 4, and 5 according to ICDAS. Each score group was randomly assigned to 4 subgroups according to CRT including ceramic bur (Group A), carbide bur (Group B), carbide bur with alumina abrasion (Group C), and carbide bur with bioactive glass (BAG) abrasion (Group D) (n = 15 for each group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!