To investigate the toxic mode of action of isothiazol-3-one biocides the four compounds N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT) and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) were purified and tested as single chemical entities for their effects on the human hepatoblastoma cell line Hep G2 and on isolated and cellular glutathione reductase GR). The two chlorinated substances CIT and DCOIT significantly decreased the amount of total cellular glutathione (GSx) in a dose and time dependent manner. Concomitantly, an increase in the level of oxidised glutathione (GSSG) was observed. The resulting shift in the GSH/GSSG ratio entailing the breakdown of the cellular thiol reduction potential was accompanied by necrotic morphological changes like swelling of the plasma membrane and subsequent lysis of the cells. Additionally, CIT and DCOIT were found to inhibit cellular GR in the cells in a concentration dependent manner. The T-SAR-based (thinking in terms of structure-activity relationships) comparison of the chlorine-substituted structures CIT and DCOIT with their non-chlorinated and less active analogues MIT and OIT identified the chlorine substituents and the resulting reaction mechanisms to be the key structural mediators of the observed toxic effects. Furthermore, differences in the activity of both chlorinated substances could be explained using the T-SAR approach to link the lipophilicity and the intrinsic glutathione-reactivity of the compounds to the expected target site concentrations inside the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2008.01.011 | DOI Listing |
Chem Res Toxicol
December 2009
Department 3 Sustainability in Chemistry, UFT-Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany.
To demonstrate how baseline toxicity can be separated from other more specific modes of toxic action and to address possible pitfals when dealing with hydrophobic substances, the four isothiazol-3-one biocides N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT), and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) as an example for reactive electrophilic xenobiotics were tested for their cytotoxic effects on the human hepatoblastoma cell line Hep G2, on the marine bacterium Vibrio fischeri, and on the limnic green alga Scenedesmus vacuolatus. In each of the three test systems, toxic effects were observed in a consistent pattern. The two chlorinated compounds and OIT were found to be significantly more toxic than MIT.
View Article and Find Full Text PDFToxicology
April 2008
UFT - Centre for Environmental Research and Technology, University of Bremen, Leobener Strabe, D-28359 Bremen, Germany.
To investigate the toxic mode of action of isothiazol-3-one biocides the four compounds N-methylisothiazol-3-one (MIT), 5-chloro-N-methylisothiazol-3-one (CIT), N-octylisothiazol-3-one (OIT) and 4,5-dichloro-N-octylisothiazol-3-one (DCOIT) were purified and tested as single chemical entities for their effects on the human hepatoblastoma cell line Hep G2 and on isolated and cellular glutathione reductase GR). The two chlorinated substances CIT and DCOIT significantly decreased the amount of total cellular glutathione (GSx) in a dose and time dependent manner. Concomitantly, an increase in the level of oxidised glutathione (GSSG) was observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!