Understanding a biological module involves recognition of its structure and the dynamics of its principal components. In this report we present an analysis of the dynamics of the repression module within the regulation of the trp operon in Escherichia coli. We combine biochemical data for reaction rate constants for the trp repressor binding to trp operator and in vivo data of a number of tryptophan repressors (TrpRs) that bind to the operator. The model of repression presented in this report greatly differs from previous mathematical models. One, two or three TrpRs can bind to the operator and repress the transcription. Moreover, reaction rates for detachment of TrpRs from the operator strongly depend on tryptophan (Trp) concentration, since Trp can also bind to the repressor-operator complex and stabilize it. From the mathematical modeling and analysis of reaction rates and equilibrium constants emerges a high-quality, accurate and effective module of trp repression. This genetic switch responds accurately to fast consumption of Trp from the interior of a cell. It switches with minimal dispersion when the concentration of Trp drops below a thousand molecules per cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2008.01.060 | DOI Listing |
Biol Aujourdhui
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates.
View Article and Find Full Text PDFNat Commun
January 2025
Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.
View Article and Find Full Text PDFJ Infect
January 2025
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.
Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally.
Cell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!