We have studied the nuclear localization of rhodamine-labeled pre-mRNA after microinjection into nuclei of cultured rat kidney epithelial cells. Intranuclear localization of the injected RNA was followed in the living cells by fluorescence microscopy and digital image processing. Injected human beta-globin pre-mRNA became localized in 30-60 discrete nuclear sites that were coincident with loci defined by monoclonal antibodies against small nuclear ribonucleoproteins (Sm) or another spliceosome component (SC-35) in parallel immunocytochemical studies on the same nuclei. Similar patterns of nuclear localization were observed with a rat proenkephalin pre-mRNA. Nuclear microinjection of an intronlacking beta-globin RNA, a splicing-defective beta-globin mutant pre-mRNA, or an antisense beta-globin pre-mRNA did not result in localization at discrete sites. These results indicate that pre-mRNA binds preferentially to nuclear Sm and SC-35 antibody-reactive sites in vivo and that the binding requires intron sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC52301 | PMC |
http://dx.doi.org/10.1073/pnas.88.16.7391 | DOI Listing |
Bioinformatics
January 2025
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Ophthalmology Department, Federal University of São Paulo, São Paulo 04039-032, Brazil.
Background: Nance-Horan syndrome (NHS) is a rare, frequently underdiagnosed, X-linked disease caused by mutations in the NHS gene. In males, it causes bilateral dense pediatric cataracts, dental anomalies, and facial dysmorphisms. Females traditionally have a more subtle phenotype with discrete lens opacities as an isolated feature.
View Article and Find Full Text PDFGeroscience
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic.
We develop a hybrid classical-quantum method for solving the Lorenz system. We use the forward Euler method to discretize the system in time, transforming it into a system of equations. This set of equations is solved by using the Variational Quantum Linear Solver (VQLS) algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!