Background: Studies were conducted between April 2004 and February 2006 to determine the blood-feeding pattern of Anopheles mosquitoes in Mwea Kenya.
Methods: Samples were collected indoors by pyrethrum spay catch and outdoors by Centers for Disease Control light traps and processed for blood meal analysis by an Enzyme-linked Immunosorbent Assay.
Results: A total of 3,333 blood-fed Anopheles mosquitoes representing four Anopheles species were collected and 2,796 of the samples were assayed, with Anopheles arabiensis comprising 76.2% (n = 2,542) followed in decreasing order by Anopheles coustani 8.9% (n = 297), Anopheles pharoensis 8.2% (n = 272) and Anopheles funestus 6.7% (n = 222). All mosquito species had a high preference for bovine (range 56.3-71.4%) over human (range 1.1-23.9%) or goat (0.1-2.2%) blood meals. Some individuals from all the four species were found to contain mixed blood meals. The bovine blood index (BBI) for An. arabiensis was significantly higher for populations collected indoors (71.8%), than populations collected outdoors (41.3%), but the human blood index (HBI) did not differ significantly between the two populations. In contrast, BBI for indoor collected An. funestus (51.4%) was significantly lower than for outdoor collected populations (78.0%) and the HBI was significantly higher indoors (28.7%) than outdoors (2.4%). Anthropophily of An. funestus was lowest within the rice scheme, moderate in unplanned rice agro-ecosystem, and highest within the non-irrigated agro-ecosystem. Anthropophily of An. arabiensis was significantly higher in the non-irrigated agro-ecosystem than in the other agro-ecosystems.
Conclusion: These findings suggest that rice cultivation has an effect on host choice by Anopheles mosquitoes. The study further indicate that zooprophylaxis may be a potential strategy for malaria control, but there is need to assess how domestic animals may influence arboviruses epidemiology before adapting the strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291060 | PMC |
http://dx.doi.org/10.1186/1475-2875-7-43 | DOI Listing |
BMC Genomics
January 2025
Program in Public Health, College of Health Sciences, University of California, Irvine, California, USA.
Background: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus.
View Article and Find Full Text PDFBackground: Escalating pyrethroid resistance in malaria vectors highlights the urgency of implementing new control tools incorporating non-pyrethroid molecules. Here, using DNA-based metabolic resistance markers, we assessed the efficacy of the dual active ingredients net Royal Guard against pyrethroids-resistant malaria vectors in Cameroon, establishing its long-term impact on mosquitoes' life traits after exposure.
Results: Cone assays revealed low efficacy of Royal Guard against field Anopheles populations.
Wellcome Open Res
December 2024
Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
Background: , a malaria mosquito originally from South Asia and the Middle East, has been expanding across both Asia and Africa in recent decades. The invasion of this species into sub-Saharan Africa is of particular concern given its potential to increase malaria burden, especially in urban environments where thrives. Whilst surveillance of this vector in Africa has recently increased markedly there is a need to review the existing methods of control so that we can stop, rather than simply monitor, its spread in Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!