Intracellular influenza virus nucleoprotein (NP) is characterized by a high efficiency of homo-polymers formation, however their antigenic structure is still incompletely known. Herein, we report that RNase-resistant intracellular NP homo-polymers have a highly ordered conformational antigenic epitope, which depends on inter-subunit interactions of monomeric NPs. Our studies have shown that in radioimmunoprecipitation (RIPA) intracellular NP polymers bind mAb N5D3 and RNase does not prevent their mAb binding. In contrast to NP polymers, NP monomeric subunits, obtained by thermo-dissociation of NP polymers, fail to bind the mAb N5D3 in RIPA. At the same time, the in vitro concentration of thermo-denatured monomeric NPs in both soluble and immobilized forms results in NP-NP association, accompanied by renaturation of the N5D3 epitope. The same results were detected by Western blotting, where the pre-denatured NP monomers were concentrated on nitrocellulose into a single 56 kDa band, which then caused NP-NP self-association as well as N5D3 epitope renaturation. Thus, the in vitro renaturation of N5D3 epitope is markedly dependent on NP monomers concentration. The results obtained suggest that in vivo formation and in vitro renaturation of the N5D3 epitope depend on inter-subunit interactions of monomeric NPs and NP-NP interactions influence the antigenic structure of the influenza virus NP polymers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2311283 | PMC |
http://dx.doi.org/10.1186/1743-422X-5-37 | DOI Listing |
Virol J
February 2008
The D.I. Ivanovsky Institute of Virology, Gamaleya str, 16, Moscow, Russia.
Intracellular influenza virus nucleoprotein (NP) is characterized by a high efficiency of homo-polymers formation, however their antigenic structure is still incompletely known. Herein, we report that RNase-resistant intracellular NP homo-polymers have a highly ordered conformational antigenic epitope, which depends on inter-subunit interactions of monomeric NPs. Our studies have shown that in radioimmunoprecipitation (RIPA) intracellular NP polymers bind mAb N5D3 and RNase does not prevent their mAb binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!