This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6941.2008.00449.x | DOI Listing |
J Fish Biol
January 2025
Chair of Hydrobiology and Fisheries, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
The annual flood pulse is a defining feature of Amazonian floodplain lakes, creating a highly variable environment that influences resource availability, such as food and habitat. These cyclical changes necessitate a high degree of adaptability among fish species, many of which have evolved specialized strategies to cope with the fluctuating conditions. In 2023, the Amazon basin experienced a record-breaking drought event, leading to mass mortality of Amazonian fish and other wildlife.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research, Manaus, Brazil.
Optical characterization of dissolved organic carbon (DOC) freshly collected from the circumneutral "white water" of the Rio Solimoes revealed that it had lower aromaticity, lower molecular weight, and a greater autochthonous content than DOC from the acidic "black water" of the Rio Negro. The tambaqui (Colossoma macropomum), a characid member of the Serrasalmidae, is a model neotropical fish that migrates annually between the two rivers. We analysed ionoregulatory responses of the tambaqui over 24 h in ion-poor water at pH 7.
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Research Institute for Farm Animal Biology, Dummerstorf, Germany.
Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!