Second virial coefficient of bmimBF4/triton X-100/ cyclohexane ionic liquid microemulsion as investigated by microcalorimetry.

Langmuir

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.

Published: April 2008

The second virial coefficient of the ionic liquid (IL) microemulsion was obtained for the first time using microcalorimetry. The heat of dilution of the microemulsion solutions was measured by isothermal titration microcalorimetry (ITC), and the second virial coefficient was derived from the heat of dilution and the number density of the IL microemulsion solutions on the basis of a hard-sphere interaction potential assumption and as a function of the second-order polynomial. The validity of the second virial coefficient was confirmed by the percolation behavior of different ionic liquid microemulsion solutions of Triton X-100 in cyclohexane with or without added salts. The information obtained from the second virial coefficient shows that the interactions between ionic liquid microemulsion droplets are much stronger than those for traditional microemulsions, which may be attributed to the relatively larger size of the microemulsion droplets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la703834zDOI Listing

Publication Analysis

Top Keywords

second virial
20
virial coefficient
20
ionic liquid
16
liquid microemulsion
16
microemulsion solutions
12
heat dilution
8
microemulsion droplets
8
microemulsion
7
second
5
coefficient
5

Similar Publications

Nonspecific protein-protein interactions (PPIs) are key to understanding the behavior of proteins in solutions. However, experimentally measuring anisotropic PPIs as a function of orientation and distance has been challenging. Here, we propose to measure a new parameter, the generalized second virial coefficient, (), to address this challenge.

View Article and Find Full Text PDF

How to define temperature in active systems?

J Chem Phys

December 2024

Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany.

We are used to measuring temperature with a thermometer, and we know from everyday life that different types of thermometers measure the same temperature. This experience can be based on equilibrium thermodynamics, which explains the equivalence of different possibilities to define temperature. In contrast, for systems out of equilibrium such as active matter, measurements performed with different thermometers can generally lead to different temperature values.

View Article and Find Full Text PDF

Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.

View Article and Find Full Text PDF

Non-nematicity of the filamentary phase in systems of hard minor circular arcs.

Phys Rev E

October 2024

Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera," Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain.

This work further investigates an aspect of the phase behavior of hard circular arcs whose phase diagram has been recently calculated by Monte Carlo numerical simulations: the non-nematicity of the filamentary phase that hard minor circular arcs form. Both second-virial density-functional theory and further Monte Carlo numerical simulations find that the positional one-particle density function undulates in the direction transverse to the axes of the filaments while further Monte Carlo numerical simulations find that the mobility of the hard minor circular arcs across the filaments occurs via a mechanism reminiscent of the mechanism of diffusion in a smectic phase: the filamentary phase is not a {"modulated" ["splay(-bend)"]} nematic phase.

View Article and Find Full Text PDF

We present a method, FMAPS(q), for calculating the structure factor, , of a protein solution, by extending our ast Fourier transform-based odeling of tomistic rotein-protein interactions (FMAP) approach. The interaction energy consists of steric, nonpolar attractive, and electrostatic terms that are additive among all pairs of atoms between two protein molecules. In the present version, we invoke the free-rotation approximation, such that the structure factor is given by the Fourier transform of the protein center-center distribution function .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!