The lipid peroxidation product 4-hydroxynonenal (4-HNE) is a signaling mediator with wide-ranging biological effects. In this paper, we report that disruption of mGsta4, a gene encoding the 4-HNE-conjugating enzyme mGSTA4-4, causes increased 4-HNE tissue levels and is accompanied by age-dependent development of obesity which precedes the onset of insulin resistance in 129/sv mice. In contrast, mGsta4 null animals in the C57BL/6 genetic background have normal 4-HNE levels and remain lean, indicating a role of 4-HNE in triggering or maintaining obesity. In mGsta4 null 129/sv mice, the expression of the acetyl-CoA carboxylase (ACC) transcript is enhanced several-fold with a concomitant increase in the tissue level of malonyl-CoA. Also, mitochondrial aconitase is partially inhibited, and tissue citrate levels are increased. Accumulation of citrate could lead to allosteric activation of ACC, further augmenting malonyl-CoA levels. Aconitase may be inhibited by 4-HNE or by peroxynitrite generated by macrophages which are enriched in white adipose tissue of middle-aged mGsta4 null 129/sv mice and, upon lipopolysaccharide stimulation, produce more reactive oxygen species and nitric oxide than macrophages from wild-type mice. Excessive malonyl-CoA synthesized by the more abundant and/or allosterically activated ACC in mGsta4 null mice leads to fat accumulation by the well-known mechanisms of promoting fatty acid synthesis and inhibiting fatty acid beta-oxidation. Our findings complement the recent report that obesity causes both a loss of mGSTA4-4 and an increase in the level of 4-HNE [Grimsrud, P. A., et al. (2007) Mol. Cell. Proteomics 6, 624-637]. The two reciprocal processes are likely to establish a positive feedback loop that would promote and perpetuate the obese state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi702124uDOI Listing

Publication Analysis

Top Keywords

mgsta4 null
16
129/sv mice
12
lipid peroxidation
8
peroxidation product
8
product 4-hydroxynonenal
8
null 129/sv
8
fatty acid
8
mice
6
4-hne
6
mgsta4
5

Similar Publications

4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1.

View Article and Find Full Text PDF

Disruption of the mGsta4 gene increases life span of C57BL mice.

J Gerontol A Biol Sci Med Sci

January 2010

Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.

The lipid peroxidation product 4-hydroxynonenal (4-HNE) forms as a consequence of oxidative stress. By electrophilic attack on biological macromolecules, 4-HNE mediates signaling or may cause toxicity. A major route of 4-HNE disposal is via glutathione conjugation, in the mouse catalyzed primarily by glutathione transferase mGSTA4-4.

View Article and Find Full Text PDF

The lipid peroxidation product 4-hydroxynonenal (4-HNE) is a signaling mediator with wide-ranging biological effects. In this paper, we report that disruption of mGsta4, a gene encoding the 4-HNE-conjugating enzyme mGSTA4-4, causes increased 4-HNE tissue levels and is accompanied by age-dependent development of obesity which precedes the onset of insulin resistance in 129/sv mice. In contrast, mGsta4 null animals in the C57BL/6 genetic background have normal 4-HNE levels and remain lean, indicating a role of 4-HNE in triggering or maintaining obesity.

View Article and Find Full Text PDF

The Fas (apo/CD95) receptor which belongs to the TNF-alpha family is a transmembrane protein involved in the signaling for apoptosis through the extrinsic pathway. During this study, we have examined a correlation between intracellular levels of 4-HNE and expression of Fas in human lens epithelial (HLE B-3) cells. Our results show that in HLE B-3 cells, Fas is induced by 4-HNE in a concentration- and time-dependent manner, and it is accompanied by the activation of JNK, caspase 3, and the onset of apoptosis.

View Article and Find Full Text PDF

The course of CCl4 induced hepatotoxicity is altered in mGSTA4-4 null (-/-) mice.

Toxicology

January 2006

Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, 77555-0609, USA.

Glutathione S-transferases (GSTs) play a key role in cellular detoxification of environmental toxicants through their conjugation to glutathione (GSH). Recent studies have shown that the alpha-class GSTs also provide protection against oxidative stress and lipid peroxidation (LPO). GSTA4-4 is a member of a sub group of the alpha-class GSTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!