SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites.

ChemMedChem

Molecular Design and Informatics, Organon, part of Schering-Plough Corporation, P.O. Box 20, 5340 BH Oss, The Netherlands.

Published: May 2008

Predictions of potential metabolites based on chemical structure are becoming increasingly important in drug discovery to guide medicinal chemistry efforts that address metabolic issues and to support experimental metabolite screening and identification. Herein we present a novel rule-based method, SyGMa (Systematic Generation of potential Metabolites), to predict the potential metabolites of a given parent structure. A set of reaction rules covering a broad range of phase 1 and phase 2 metabolism has been derived from metabolic reactions reported in the Metabolite Database to occur in humans. An empirical probability score is assigned to each rule representing the fraction of correctly predicted metabolites in the training database. This score is used to refine the rules and to rank predicted metabolites. The current rule set of SyGMa covers approximately 70 % of biotransformation reactions observed in humans. Evaluation of the rule-based predictions demonstrated a significant enrichment of true metabolites in the top of the ranking list: while in total, 68 % of all observed metabolites in an independent test set were reproduced by SyGMa, a large part, 30 % of the observed metabolites, were identified among the top three predictions. From a subset of cytochrome P450 specific metabolites, 84 % were reproduced overall, with 66 % in the top three predicted phase 1 metabolites. A similarity analysis of the reactions present in the database was performed to obtain an overview of the metabolic reactions predicted by SyGMa and to support ongoing efforts to extend the rules. Specific examples demonstrate the use of SyGMa in experimental metabolite identification and the application of SyGMa to suggest chemical modifications that improve the metabolic stability of compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.200700312DOI Listing

Publication Analysis

Top Keywords

potential metabolites
12
metabolites
11
experimental metabolite
8
metabolic reactions
8
predicted metabolites
8
observed metabolites
8
top three
8
sygma
7
sygma combining
4
combining expert
4

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.

View Article and Find Full Text PDF

Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel.

View Article and Find Full Text PDF

Analysis of intestinal bacterial carboxylesterase-mediated metabolites and the potential antitumour molecular mechanism of angoroside C.

J Asian Nat Prod Res

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.

Angoroside C (AgrC) is a compound with many pharmacological properties. However, its antitumour potential has not been well studied. The low bioavailability of AgrC suggests a strong link to gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!