In brain monoaminergic systems, common biogenic amines, including dopamine, norepinephrine, and serotonin, serve as neurotransmitters. Monoamine autoreceptors provide feedback regulation in neurotransmitter release, and monoamine transporters clear the released neurotransmitters to control synaptic signaling. Recently, trace amine-associated receptor 1 (TAAR1) has been found to be expressed in brain monoaminergic nuclei and activated by common biogenic amines in vitro. This study used transfected cells and brain synaptosomes to evaluate the interaction of common biogenic amines with TAAR1 and monoamine autoreceptors and explore their modulatory effects on monoamine transporters. We confirmed that TAAR1 was activated by dopamine, norepinephrine, and serotonin and demonstrated that TAAR1 signaling was attenuated by monoamine autoreceptors at exposure to dopamine, norepinephrine, and serotonin. In transfected cells, TAAR1 in response to dopamine, norepinephrine, and serotonin significantly inhibited uptake and promoted efflux of [3H]dopamine, [3H]norepinephrine, and [3H]serotonin, respectively, whereas the monoamine autoreceptors, D2s, alpha(2A), and 5-HT(1B) enhanced the uptake function under the same condition. In brain synaptosomes, dopamine, norepinephrine, and serotonin significantly altered the uptake and efflux of [3H]dopamine, [3H]norepinephrine, and [3H]serotonin, respectively, when the monoamine autoreceptors were blocked. By comparing the effects of dopamine, norepinephrine, and serotonin in monkey and wild-type mouse synaptosomes to their effects in TAAR1 knockout mouse synaptosomes, we deduced that TAAR1 activity inhibited uptake and promoted efflux by monoamine transporters and that monoamine autoreceptors exerted opposite effects. These data provide the first evidence that common biogenic amines modulate monoamine transporter function via both TAAR1 and monoamine autoreceptors, which may balance monoaminergic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.107.135079DOI Listing

Publication Analysis

Top Keywords

monoamine autoreceptors
32
dopamine norepinephrine
24
norepinephrine serotonin
24
common biogenic
20
biogenic amines
20
monoamine transporters
16
monoamine
12
brain synaptosomes
12
trace amine-associated
8
amine-associated receptor
8

Similar Publications

The psychostimulant drug methamphetamine (METH) causes euphoria in humans and locomotor hyperactivity in rodents by acting on the mesolimbic dopamine (DA) pathway and has severe abuse and addiction liability. Behavioral sensitization, an increased behavioral response to a drug with repeated administration, can persist for many months after the last administration. Research has shown that the serotonin 1B (5-HT1B) receptor plays a critical role in the development and maintenance of drug addiction, as well as other addictive behaviors.

View Article and Find Full Text PDF

Amphetamine-induced reverse transport of dopamine does not require cytosolic Ca.

J Biol Chem

August 2023

Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, Panum Institute - Maersk Tower 7.5, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Amphetamines (AMPHs) are substrates of the dopamine transporter (DAT) and reverse the direction of dopamine (DA) transport. This has been suggested to depend on activation of Ca-dependent pathways, but the mechanism underlying reverse transport via endogenously expressed DAT is still unclear. Here, to enable concurrent visualization by live imaging of extracellular DA dynamics and cytosolic Ca levels, we employ the fluorescent Ca sensor jRGECO1a expressed in cultured dopaminergic neurons together with the fluorescent DA sensor GRAB expressed in cocultured "sniffer" cells.

View Article and Find Full Text PDF

Modulatory mechanisms of neurotransmitter release and clearance are highly controlled processes whose finely tuned regulation is critical for functioning of the nervous system. Dysregulation of the monoamine neurotransmitter dopamine can lead to several neuropathies. Synaptic modulation of dopamine is known to involve pre-synaptic D2 auto-receptors and acid sensing ion channels.

View Article and Find Full Text PDF

Prevention of diet restriction induced hyperactivity but not body-weight reduction in rats co-treated with tryptophan: relationship with striatal serotonin and dopamine metabolism and serotonin-1A auto-receptor expression.

Nutr Neurosci

August 2022

Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan.

Anorexia Nervosa (AN) is an eating and behavioral disorder characterized with anxiety/depression, hyperactivity, behavioral impulsivity and psychosis. Most of the associated symptoms are related to the deficiency of serotonin (5-hydroxytryptamine: 5-HT) stores. A deficiency of 5-HT can modulate dopamine neurotransmission in the striatum to elicit hyperactivity and psychosis in AN patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!