A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Requirement of a plasmid-encoded catalase for survival of Rhizobium etli CFN42 in a polyphenol-rich environment. | LitMetric

Requirement of a plasmid-encoded catalase for survival of Rhizobium etli CFN42 in a polyphenol-rich environment.

Appl Environ Microbiol

Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM. Ap. Postal 565-A, Cuernavaca, Morelos, Mexico.

Published: April 2008

Nitrogen-fixing bacteria collectively called rhizobia are adapted to live in polyphenol-rich environments. The mechanisms that allow these bacteria to overcome toxic concentrations of plant polyphenols have not been clearly elucidated. We used a crude extract of polyphenols released from the seed coat of the black bean to simulate a polyphenol-rich environment and analyze the response of the bean-nodulating strain Rhizobium etli CFN42. Our results showed that the viability of the wild type as well as that of derivative strains cured of plasmids p42a, p42b, p42c, and p42d or lacking 200 kb of plasmid p42e was not affected in this environment. In contrast, survival of the mutant lacking plasmid p42f was severely diminished. Complementation analysis revealed that the katG gene located on this plasmid, encoding the only catalase present in this bacterium, restored full resistance to testa polyphenols. Our results indicate that oxidation of polyphenols due to interaction with bacterial cells results in the production of a high quantity of H(2)O(2), whose removal by the katG-encoded catalase plays a key role for cell survival in a polyphenol-rich environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2293148PMC
http://dx.doi.org/10.1128/AEM.02457-07DOI Listing

Publication Analysis

Top Keywords

polyphenol-rich environment
12
rhizobium etli
8
etli cfn42
8
requirement plasmid-encoded
4
plasmid-encoded catalase
4
catalase survival
4
survival rhizobium
4
polyphenol-rich
4
cfn42 polyphenol-rich
4
environment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!