Burkholderia pseudomallei is the causative agent of melioidosis, an overwhelming, rapidly fatal septic infection, and B. thailandensis is a closely related, less virulent species. Both organisms are naturally competent for DNA transformation, and this report describes a procedure exploiting this property for the rapid generation of marked deletion mutations by using PCR products. The method was employed to create 61 mutant strains. Several selectable elements were employed, including elements carrying loxP and FRT recombinase recognition sites to facilitate resistance marker excision. Chromosomal mutations could also be transferred readily between strains by transformation. The availability of simple procedures for creating defined chromosomal mutations and moving them between strains should facilitate genetic analysis of virulence and other traits of these two Burkholderia species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2394929PMC
http://dx.doi.org/10.1128/AEM.00030-08DOI Listing

Publication Analysis

Top Keywords

burkholderia pseudomallei
8
chromosomal mutations
8
targeted mutagenesis
4
burkholderia
4
mutagenesis burkholderia
4
burkholderia thailandensis
4
thailandensis burkholderia
4
pseudomallei natural
4
natural transformation
4
transformation pcr
4

Similar Publications

We report a first case of ceftazidime-resistant pediatric melioidosis involving a previously healthy seven-year-old boy who presented with right lobar pneumonia complicated with a 5-cm lung abscess. Ceftazidime was initiated on Day-6 of admission when (ceftazidime-susceptible, minimum inhibitory concentration [MIC] 1.0 mcg/mL) was isolated from blood.

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

A novel ready-to-use loop-mediated isothermal amplification (LAMP) method for detection of Burkholderia mallei and B. pseudomallei.

BMC Microbiol

January 2025

Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.

Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.

View Article and Find Full Text PDF

Melioidosis is a life-threatening infectious disease caused by the bacterium . Although culture is the gold standard for diagnosing melioidosis, it is time-consuming and delays timely treatment. Non-culture-based diagnostic techniques are interesting alternatives for the rapid detection of melioidosis.

View Article and Find Full Text PDF

Melioidosis is a neglected tropical infection caused by the Gram-negative bacterium Burkholderia pseudomallei, which is found in soil and water across tropical countries. The infection spectrum ranges from mild localized lesions to severe sepsis. The clinical presentation, severity, and outcome are influenced by the route of infection, bacterial load, strain virulence, and specific virulence genes of B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!