Background: Vascular endothelial growth factor (VEGF), which affects tumor angiogenesis, is expressed as different splice variants, including the major isoforms VEGF(165) and VEGF(121), and can be cleaved by plasmin to generate VEGF(110). The amount of VEGF(121) and VEGF(110) in biological samples has not been well studied.

Methods: We developed an ELISA that detects VEGF(165) and VEGF(121) equally, but does not detect VEGF(110). We used this ELISA together with 2 other ELISAs, one detecting VEGF(165) and the other detecting VEGF(165), VEGF(121), and VEGF(110) equally, to assess the concentrations of VEGF(121) and VEGF(110) in ovarian cancer tumors.

Results: The median concentrations in ovarian cancer tumor lysates were 0.61 (range <0.055-74) fmol/mg protein for VEGF(165), 1.4 (range <0.20-500) fmol/mg protein for VEGF(165) plus VEGF(121), and 2.3 (range <0.079-520) fmol/mg protein for total VEGF including VEGF(110) (n = 248). VEGF concentrations measured by the 3 ELISAs were highly correlated (r = 0.91-0.94). Median estimated VEGF(121) and VEGF(110) concentrations were 0.77 and 0.58 fmol/mg protein, respectively. In lysates with measurable VEGF(165) and total VEGF concentrations, mean VEGF(165) was approximately 31% (SD 23%) of the total VEGF (n = 217). In contrast, VEGF(165) constituted approximately half of the total circulating VEGF.

Conclusion: VEGF(165), VEGF(121), and VEGF(110) may be present at significant amounts in ovarian cancer tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2007.096099DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
12
vegf165 vegf121
12
vegf121 vegf110
12
assess concentrations
8
splice variants
8
vegf110 ovarian
8
detecting vegf165
8
vegf110
6
vegf121
5
elisa 3-elisa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!