Aim: Mechanical forces are important regulators of cell and tissue phenotype. We hypothesized that mechanical loading and boundary conditions would influence neovessel activity during angiogenesis.
Methods And Results: Using an in vitro model of angiogenesis sprouting and a mechanical loading system, we evaluated the effects of boundary conditions and applied loading. The model consisted of rat microvessel fragments cultured in a 3D collagen gel, previously shown to recapitulate angiogenic sprouting observed in vivo. We examined changes in neovascular growth in response to four different mechanical conditions. Neovessel density, diameter, length and orientation were measured from volumetric confocal images of cultures exposed to no external load (free-floating shape control), intrinsic loads (fixed ends, no stretch), static external load (static stretch), or cyclic external load (cyclic stretch). Neovessels sprouted and grew by the third day of culture and continued to do so during the next 3 days of loading. The numbers of neovessels and branch points were significantly increased in the static stretch group when compared with the free-floating shape control group. In all mechanically loaded cultures, neovessel diameter and length distributions were heterogeneous, whereas they were homogeneous in shape control cultures. Neovessels were significantly more oriented along the direction of mechanical loading than those in the shape controls. Interestingly, collagen fibrils were organized parallel and adjacent to growing neovessels.
Conclusion: Externally applied boundary conditions regulate neovessel sprouting and elongation during angiogenesis, affecting both neovessel growth characteristics and network morphometry. Furthermore, neovessels align parallel to the direction of stress/strain or internally generated traction, and this may be because of collagen fibril alignment induced by the growing neovessels themselves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840993 | PMC |
http://dx.doi.org/10.1093/cvr/cvn055 | DOI Listing |
Mol Ecol
January 2025
Department of Environmental Toxicology, University of California Davis, Davis, California, USA.
Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).
View Article and Find Full Text PDFBMC Psychol
January 2025
School of Public Administration and Policy, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, Liaoning, China.
This study examines the interplay between humble teacher leadership and student creative process engagement, grounded in Social Exchange Theory and Self-Determination Theory. Additionally, it analyzes the sequential mediating roles of student trust and psychological empowerment, as well as the moderating effect of proactive personality. Data were collected at three time points from 384 participants across Chinese universities and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with Smart PLS 4.
View Article and Find Full Text PDFBrain Spine
October 2024
Department of Clinical Medicine, University of Bergen Faculty of Medicine and Dentistry, Bergen, Norway.
Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.
Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?
Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.
Int J Numer Method Biomed Eng
January 2025
Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Verona, Italy.
Accurate reconstruction of the right heart geometry and motion from time-resolved medical images is crucial for diagnostic enhancement and computational analysis of cardiac blood dynamics. Commonly used segmentation and/or reconstruction techniques, exclusively relying on short-axis cine-MRI, lack precision in critical regions of the right heart, such as the ventricular base and the outflow tract, due to its unique morphology and motion. Furthermore, the reconstruction procedure is time-consuming and necessitates significant manual intervention for generating computational domains.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!