Isoflavonoids are a diverse group of biologically active natural products that accumulate in soybean seeds during development. The majority of isoflavonoids are accumulated in the form of their glyco- and malonyl-conjugates in soybean seeds. The conjugation step confers stability and solubility to isoflavone aglycones enabling their compartmentalization to vacuoles or transport to the site of accumulation. A functional genomic approach was used to identify isoflavonoid specific glycosyltransferase (UGT) and malonyltransferase (MT) from soybean (Glycine max) seeds. An expressed sequence tag database for soybean was searched by key words to make a list of candidate genes. The full-length cDNAs for candidate UGTs and MTs were obtained and cloned into an expression vector for the production of recombinant enzymes. The in vitro enzymatic activity assays were conducted for recombinant UGTs and MTs using uridine diphosphate glucose and malonyl CoA, respectively, as donors with isoflavone substrates. Among several recombinant enzymes, UGT73F2 showed glycosylation activity towards all three soybean isoflavone aglycones and GmMT7 exhibited malonylation activity towards isoflavone glycosides. The subcellular localization study revealed both UGT73F2 and GmMT7 to be in the cytoplasm. The transcripts and protein accumulation patterns for UGT73F2 and GmMT7 genes have provided further support for their in planta function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/ern046 | DOI Listing |
Plants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
Soybean is an important and versatile crop worldwide. Enhancing soybean architecture offers a potential method to increase yield. Plant-specific transcription factors play a crucial, yet often unnoticed, role in regulating plant growth and development.
View Article and Find Full Text PDFGenes (Basel)
January 2025
College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.
Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
Tonoplast intrinsic proteins (TIPs) are the channel-forming proteins predominantly found in the tonoplast of plant cells. Despite the identification of TIPs in numerous plant species, very less is known about the precise role of different TIP subgroups. In the present study, two genes belonging to the TIP3 subgroup were studied to understand tissue-specific role and solute transport activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!