Elloramycin is an anthracycline-like antitumour drug produced by Streptomyces olivaceus Tü2353. Cosmid cos16F4 has been previously shown to direct the biosynthesis of the elloramycin aglycon 8-demethyltetracenomycin C (8-DMTC), but not elloramycin. Sequencing of the 24.2 kb insert in cos16F4 shows the presence of 17 genes involved in elloramycin biosynthesis (elm genes) together with another additional eight ORFs probably not involved in elloramycin biosynthesis. The 17 genes would code for the biosynthesis of the polyketide moiety, sugar transfer, methylation of the tetracyclic ring and the sugar moiety, and export. Four genes (rhaA, rhaB, rhaC and rhaD) encoding the enzymic activities required for the biosynthesis of the sugar l-rhamnose were also identified in the S. olivaceus chromosome. The involvement of this rhamnose gene cluster in elloramycin biosynthesis was demonstrated by insertional inactivation of the rhaB gene, generating a non-producer mutant that accumulates the 8-DMTC C aglycon. Coexpression of cos16F4 with pEM4RO (expressing the four rhamnose biosynthesis genes) in Streptomyces lividans led to the formation of elloramycin, demonstrating that both subclusters are required for elloramycin biosynthesis. These results demonstrate that, in contrast to most of the biosynthesis gene clusters from actinomycetes, genes involved in the biosynthesis of elloramycin are located in two chromosomal loci.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.2007/014035-0DOI Listing

Publication Analysis

Top Keywords

elloramycin biosynthesis
16
biosynthesis elloramycin
12
biosynthesis
11
elloramycin
9
streptomyces olivaceus
8
cluster elloramycin
8
genes involved
8
involved elloramycin
8
biosynthesis genes
8
genes
6

Similar Publications

Engineering BioBricks for Deoxysugar Biosynthesis and Generation of New Tetracenomycins.

ACS Omega

June 2023

Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.

Tetracenomycins and elloramycins are polyketide natural products produced by several actinomycetes that exhibit antibacterial and anticancer activities. They inhibit ribosomal translation by binding in the polypeptide exit channel of the large ribosomal subunit. The tetracenomycins and elloramycins are typified by a shared oxidatively modified linear decaketide core, yet they are distinguished by the extent of O-methylation and the presence of a 2',3',4'-tri-methyl-α-l-rhamnose appended at the 8-position of elloramycin.

View Article and Find Full Text PDF

Background/goal/aim: The tetracenomycins are aromatic anticancer polyketides that inhibit peptide translation via binding to the large ribosomal subunit. Here, we expressed the elloramycin biosynthetic gene cluster in the heterologous host Streptomyces coelicolor M1146 to facilitate the downstream production of tetracenomycin analogs.

Main Methods And Major Results: We developed a BioBricks genetic toolbox of genetic parts for substrate precursor engineering in S.

View Article and Find Full Text PDF

Aromatic polyketides are important therapeutic compounds which include front line antibiotics and anticancer drugs. Since most of the aromatic polyketides are known to be produced by soil dwelling Streptomyces, 54 Streptomyces strains were isolated from the soil samples. Five isolates, R1, B1, R3, R5 and Y8 were found to be potent aromatic polyketide producers and were identified by 16S rRNA gene sequencing as Streptomyces spectabilis, Streptomyces olivaceus, Streptomyces purpurascens, Streptomyces coeruleorubidus and Streptomyces lavendofoliae respectively.

View Article and Find Full Text PDF

Glycosylation, one of the most common and important reactions in biological systems, results in diverse functions and is often found in biologically active small-molecule natural products produced by microorganisms. Furthermore, sugar moieties are generally critical for their activities. Alternating the sugar structures thus provides the potentials for enhancing the biological activities of natural products, which evokes researchers to study the sugar biosynthetic machinery and its application in the modification of sugar moieties with an aim of generating unnaturally glycosylated natural product drugs with better activities.

View Article and Find Full Text PDF

The glycosyltransferase ElmGT from Streptomyces olivaceus is involved in the biosynthesis of the antitumor drug elloramycin, and it has been shown to possess a broad deoxysugar recognition pattern, being able to transfer different l- and d-deoxysugars to 8-demethyl-tetracenomycin C, the elloramycin aglycone. Site-directed mutagenesis in residues L309 and N312, located in the alpha/beta/alpha motif within the nucleoside diphosphate-sugar binding region, can be used to modulate the substrate flexibility of ElmGT, making it more precise for transfer of specific deoxysugars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!