The objective of this study was to investigate the effect of active hydroxyl groups on a titanium (Ti) surface on the bond strength between Ti and segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). Active hydroxyl groups on Ti surface oxide were controlled by immersion in hydrogen peroxide (H2O2) with different lengths of immersion time, and the resulting concentrations of active hydroxyl groups were evaluated using a zinc-complex substitution technique. For the H2O2-treated Ti, it was characterized using X-ray photoelectron spectroscopy and scanning electron spectroscopy. For the bond strength of Ti/ gamma-MPS/SPU interface, it was determined using a shear bond test. Results showed that the bond strength increased with increase in the concentration of active hydroxyl groups. In terms of durability after immersion in water at 310 K for 30 days, it was found that bond strength was improved with increase in active hydroxyl groups. Based on the results obtained, active hydroxyl groups on the surface oxide film were clearly one of the causes governing the interfacial bond strength.

Download full-text PDF

Source
http://dx.doi.org/10.4012/dmj.27.81DOI Listing

Publication Analysis

Top Keywords

active hydroxyl
28
hydroxyl groups
28
bond strength
24
interfacial bond
8
segmented polyurethane
8
gamma-mercapto propyl
8
propyl trimethoxysilane
8
groups surface
8
surface oxide
8
active
7

Similar Publications

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Axially chiral -VQMs have been extensively investigated as key intermediates to approach miscellaneous chiral structures. By sharp contrast, their structural isomers -VQMs have not been previously documented. The major reason, which results in the significant delay, may ascribe to the inherent challenges in the enantioselective activation of alkynes in a remote manner.

View Article and Find Full Text PDF

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

Green Synthesis of Red Fluorescent Carbon Quantum Dots: Antioxidant, Hemolytic, Biocompatibility, and Photocatalytic Applications.

J Fluoresc

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society, Kolhapur, Maharashtra, India.

A straightforward one-step hydrothermal method is introduced for synthesizing highly efficient red fluorescence carbon dots (R-CQDs), utilizing Heena leaf (Lawsonia inermis) powder as the carbon precursor. The resulting R-CQDs exhibit excitation at 540 nm and emission at 675 nm, a high absolute photoluminescence (PL) with quantum yield of 40% in ethanol. Various physicochemical characterization was employed to confirm successful formation of R-CQDs including UV-Vis Spectroscopy, Fourier Transform Infrared (FT-IR) Spectroscopy, X-ray diffraction Spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy.

View Article and Find Full Text PDF

NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!