Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs) assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial invariants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. With reference to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST. The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in 180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable better than the ones reported in our previous study ( approximately 92%) (2007). Conclusion. The results confirm the working hypothesis that a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the EEG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246031 | PMC |
http://dx.doi.org/10.1155/2007/35021 | DOI Listing |
J Psychiatr Res
January 2025
Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. Electronic address:
Background: Microstate characterization of electroencephalogram (EEG) is a data-driven approach to explore the functional changes and interrelationships of multiple brain networks on a millisecond scale. This study aimed to explore the pathological changes of whole-brain functional networks in patients with obsessive-compulsive disorders (OCD) through microstate analysis and further to explore its potential value as an auxiliary diagnostic index.
Methods: Forty-eight OCD patients (33 with more than moderate anxiety symptoms, 15 with mild anxiety symptoms) and 52 healthy controls (HCs) were recruited.
Stress Health
February 2025
Psychology Department, Mount St. Vincent University, Halifax, Canada.
Adverse childhood experiences (ACEs) have diverse effects on physical development and mental health. This study aimed to clarify the relationship between the quantity of ACE exposure, type of ACE exposure, and subjective level of stress felt, correlated with event-related potential activity across the scalp, while controlling for relevant confounding variables. Fifty-three participants aged 18-32 years completed questionnaires assessing their current mental health, self-regulation, childhood socioeconomic status, and history of traumatic events.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Cognitive control deficits and increased intra-subject variability have been well established as core characteristics of attention deficit hyperactivity disorder (ADHD), and there is a growing interest in their expression at the neural level. We aimed to study neural variability in ADHD, as reflected in theta inter-trial phase coherence (ITC) during error processing, a process that involves cognitive control. We examined both traditional event-related potential (ERP) measures of error processing (i.
View Article and Find Full Text PDFPain Rep
February 2025
Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan.
Introduction: Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies.
Objectives: To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms.
Cogn Neurodyn
December 2025
School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081 China.
Enhancing the accuracy of emotion recognition models through multimodal learning is a common approach. However, challenges such as insufficient modal feature learning in multimodal inference and scarcity of sample data continue to pose obstacles that need to be overcome. Therefore, we propose a novel adaptive lightweight multimodal efficient feature inference network (ALME-FIN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!