Evaluation of membrane bioreactor performance via residence time distribution: effects of membrane configuration and mixing.

Water Sci Technol

UNESCO Centre for Membrane Science and Technology, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, 2052, Australia.

Published: June 2008

Unlike conventional wastewater treatment systems that have a single effluent discharge point, membrane bioreactors (MBR) may have multiple extraction points resulting from the location of the membrane element in the reactor. This leads to multiple residence time distributions for an MBR system. One method to characterise the mixing is based on the concept of residence time distribution (RTD). A set of RTDs were generated using the conservative tracer, lithium chloride, for pilot plant MBRs with capacity up to 300 m3/day. Flat sheet and hollow fibre pilot plant MBR systems were operated in parallel on primary effluent collected at the Bedok Water Reclamation Plant in the republic of Singapore. Analysis of the RTD profiles indicated that membrane geometry did not impact on the kinetic conversion associated with nitrification because both MBRs were in well mixed conditions. However, the energy required to achieve perfect mixing with a hollow fibre module MBR, as defined by the velocity gradient, was lower than that with a flat sheet module MBR. The implication is that energy input associated with reactor mixing will depend on the configuration of the membrane. The difference in energy requirements between flat sheets and hollow fibres is such that careful consideration should be given to membrane selection in larger municipal installations.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2008.114DOI Listing

Publication Analysis

Top Keywords

residence time
12
time distribution
8
pilot plant
8
flat sheet
8
hollow fibre
8
module mbr
8
membrane
6
mbr
5
evaluation membrane
4
membrane bioreactor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!