Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment.

Stem Cells

Regenerative Medicine Institute, National Centre of Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland.

Published: May 2008

The application of mesenchymal stem cells (MSCs) for myocardial repair following ischemic injury is of strong interest, but current knowledge regarding the survival and retention of differentiation potency of stem cells under ischemic conditions is limited. The present study investigated the effects of ischemia and its components (hypoxia and glucose depletion) on MSC viability and multipotency. We demonstrate that MSCs have a profoundly greater capacity to survive under conditions of ischemia compared with cardiomyocytes, measured by detecting changes in cellular morphology, caspase activity and phosphatidylserine exposure. MSCs were also resistant to exposure to hypoxia (0.5% O(2)), as well as inhibition of mitochondrial respiration with 2,4-dinitrophenol for 72 hours, indicating that in the absence of oxygen, MSCs can survive using anaerobic ATP production. Glucose deprivation (glucose-free medium in combination with 2-deoxyglucose) induced rapid death of MSCs. Depletion of cellular ATP occurred at a lower rate during glucose deprivation than during ischemia, suggesting that glycolysis has specific prosurvival functions, independent of energy production in MSCs. After exposure to hypoxic or ischemic conditions, MSCs retained the ability to differentiate into chondrocytes and adipocytes and, more importantly, retained cardiomyogenic potency. These results suggest that MSCs are characterized by metabolic flexibility, which enables them to survive under conditions of ischemic stress and retain their multipotent phenotype. These results highlight the potential utility of MSCs in the treatment of ischemic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2007-1072DOI Listing

Publication Analysis

Top Keywords

mscs
9
metabolic flexibility
8
mesenchymal stem
8
stem cells
8
ischemic conditions
8
survive conditions
8
glucose deprivation
8
ischemic
6
flexibility permits
4
permits mesenchymal
4

Similar Publications

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Osteoarthritis is a degenerative disease of cartilage, and exosome derived from mesenchymal stem cells (MSCs) are considered promising for treating inflammatory musculoskeletal disorders, although their mechanisms are not fully understood. This study aimed to investigate the effects of exosomes derived from canine bone marrow mesenchymal stem cells (cBMSCs-Exos) on the expression of inflammatory factors and genes related cartilage matrix metabolism in IL-1β-induced canine chondrocytes. Canine BMSCs were isolated and characterized for surface markers and trilineage differentiation.

View Article and Find Full Text PDF

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a medical condition that affects the lungs and causes scarring due to the deposition of excess fibrotic tissue. This is often preceded by various causes and can lead to long-term health consequences. The treatment of PF using mesenchymal stem cells (MSCs) to correct lung damage and decrease inflammation is a current focus of research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!