The Drosophila immune deficiency (IMD) pathway, homologous to the mammalian tumor necrosis factor (TNF-alpha) signaling pathway, initiates antimicrobial peptide (AMP) production in response to infection by gram-negative bacteria. A membrane-spanning peptidoglycan recognition protein, PGRP-LC, functions as the receptor for the IMD pathway. This receptor is activated via pattern recognition and binding of monomeric peptidoglycan (DAP-type PGN) through the PGRP ectodomain. In this article, we show that the receptor PGRP-LC is down-regulated in response to Salmonella/Escherichia coli infection but is not affected by Staphylococcus infection in vivo, and an ectodomain-deleted PGRP-LC lacking the PGRP domain is an active receptor. We show that the receptor PGRP-LC regulates and integrates two host defense systems: the AMP production and melanization. A working model is proposed in which pathogen invasion and tissue damage may be monitored through the receptor integrity of PGRP-LC after host and pathogen are engaged via pattern recognition. The irreversible cleavage or down-regulation of PGRP-LC may provide an additional cue for the host to distinguish pathogenic microbes from nonpathogenic ones and to subsequently activate multiple host defense systems in Drosophila, thereby effectively combating bacterial infection and initiating tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-7907comDOI Listing

Publication Analysis

Top Keywords

imd pathway
8
amp production
8
pattern recognition
8
receptor pgrp-lc
8
host defense
8
defense systems
8
pgrp-lc
7
receptor
6
infection-induced proteolysis
4
proteolysis pgrp-lc
4

Similar Publications

Host cabbage possesses an endophyte, Bacillus subtilis, which induced immune-priming of the diamondback moth, Plutella xylostella. In contrast, larvae raised under axenic conditions lost the chance to feed the bacteria and were highly susceptible to various pathogens. Addition of B.

View Article and Find Full Text PDF

The effect of population density on the phenotype, metabolic and immunological adaptations in the cuticle of Spodoptera litura larvae.

Pest Manag Sci

January 2025

Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.

Background: Species that experience outbreaks and those that display density-dependent phase polymorphism demonstrate density-dependent prophylaxis (DDP) by increasing their immune investment in response to increasing densities. Despite this phenomenon, the mechanisms of DDP remain largely unexplored.

Results: Here, we showed that Spodoptera litura exhibited heightened cuticular melanization and enhanced cuticular immune responses when reared at higher population density.

View Article and Find Full Text PDF

This qualitative research sought to identify factors influencing patient choice of, and patient-related internal and external enablers and barriers to engagement with, type 2 diabetes (T2D) remission strategies offered by the Remission in diabetes (REMI.D) project. Patients had a choice of three diets: Total Diet Replacement (TDR)-Formula Food Products, TDR-Food, and Healthy lifestyle approach; and three activity pathways: Everyday life, General Practitioner referral, and Social hub.

View Article and Find Full Text PDF

Characterization of Unusual Serogroups of .

Microorganisms

December 2024

Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France.

Most cases of invasive meningococcal disease (IMD) in Europe are caused by isolates of the serogroups B, C, W, and Y. We aimed to explore cases caused by other unusual serogroups. We retrospectively screened IMD cases in the databases of the National Reference Center for Meningococci and in France between 2014 and 2023.

View Article and Find Full Text PDF

Cell wall components of gut commensal bacteria stimulate peritrophic matrix formation in malaria vector mosquitoes through activation of the IMD pathway.

PLoS Biol

January 2025

State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!