Phyllactinia is a unique genus within the Erysiphales (Ascomycota) having a partly endo-parasitic nature of the mycelium within the host plant tissues. We constructed phylogenetic trees for the genus Phyllactinia and its allied genera based on a total of 120 nucleotide sequences of the 28S rDNA and ITS regions to discuss their phylogenetic relationships with special references to host plants, biogeography, evolutionary dating, and taxonomy. The analysis of the Erysiphales confirmed the monophyly of the endo-parasitic genera, i.e. Leveillula, Phyllactinia, and Pleochaeta. Phyllactinia specimens used in this study were divided into six distinctive groups and three subgroups. Interestingly, Leveillula, an obligately endo-parasitic genus of the Erysiphales, grouped together with Phyllactinia, although this was not significantly supported by the Kishino-Hasegawa and Shimodaira-Hasegawa tests. This suggests that the evolution within this group of fungi occurred from partial endo-parasitism to obligate endo-parasitism. The host range of Phyllactinia is mostly confined to woody plants, especially deciduous trees. Betulaceae, Fagaceae, Ulmaceae, Moraceae, and Rosaceae may have close connections to the divergence of the groups and subgroups of Phyllactinia concerned. Most of these plant families are known as major members of the boreotropical flora of the Tertiary, which suggests an early Tertiary origin of this genus. A comparison of the phylogenies of hosts and parasites revealed that host range expansion at higher taxonomic levels (higher than family level) is independent of the phylogeny of plants. Conversely, host range expansions in lower taxonomic levels (infrafamilial or infrageneric) tend to occur within a single family or genus. An estimation of the evolutionary timing using a molecular clock approach suggested that Phyllactinia split from Pleochaeta about 60 M years ago (Ma) in the early Tertiary and divergence of the six major clades of Phyllactinia occurred between 5 and 40 Ma during the Oligocene and Miocene. Divergence within the major clades and within Leveillula occurred maybe from more than 5 Ma onwards during the Pliocene and Quaternary. This is the first comprehensive phylogenetic study of Phyllactinia and other endo-parasitic genera of the Erysiphales.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mycres.2007.11.014DOI Listing

Publication Analysis

Top Keywords

host range
12
phyllactinia
11
genus phyllactinia
8
allied genera
8
genus erysiphales
8
endo-parasitic genera
8
early tertiary
8
taxonomic levels
8
divergence major
8
major clades
8

Similar Publications

Direct repeats found in the vicinity of intron splice sites.

Naturwissenschaften

January 2025

Department of Biology, University of Washington, Seattle, WA, 98195, USA.

Four main classes of introns (group I, group II, spliceosomal, and archaeal) have been reported for all major types of RNA from nuclei and organelles of a wide range of taxa. When and how introns inserted within the genic regions of genomes, however, is often unclear. Introns were examined from Archaea, Bacteria, and Eukarya.

View Article and Find Full Text PDF

A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.

Host-guest supramolecular fluorescence probes have garnered significant attention in the detection and sensing of bioactive molecules due to their functionalization potential, adjustable physical properties, and high specificity. However, such probes that reliably, rapidly, and specifically measure neurotransmitter dynamics at the cellular and in vivo level have yet to be reported. Herein, we present a supramolecular fluorescent chemosensor designed for norepinephrine (NE) detection, showing an exceptional response and specificity through host-guest complexation.

View Article and Find Full Text PDF

Coronaviruses (CoV) emerge suddenly from animal reservoirs to cause novel diseases in new hosts. Discovered in 2012, the Middle East respiratory syndrome coronavirus (MERS-CoV) is endemic in camels in the Middle East and is continually causing local outbreaks and epidemics. While all three newly emerging human CoVs from the past 20 years (SARS-CoV, SARS-CoV-2, and MERS-CoV) cause respiratory disease, each CoV has unique host interactions that drive differential pathogeneses.

View Article and Find Full Text PDF

Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).

View Article and Find Full Text PDF

Alloreactive-free CAR-VST therapy: a step forward in long-term tumor control in viral context.

Front Immunol

January 2025

Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France.

CAR-T cell therapy has revolutionized immunotherapy but its allogeneic application, using various strategies, faces significant challenges including graft-versus-host disease and graft rejection. Recent advances using Virus Specific T cells to generate CAR-VST have demonstrated potential for enhanced persistence and antitumor efficacy, positioning CAR-VSTs as a promising alternative to conventional CAR-T cells in an allogeneic setting. This review provides a comprehensive overview of CAR-VST development, emphasizing strategies to mitigate immunogenicity, such as using a specialized TCR, and approaches to improve therapeutic persistence against host immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!