An HILIC-PI APCI MS/MS method is developed for the determination of seven biogenic amines (cadaverine, histamine, putrescine, spermidine, spermine, tryptamine and tyramine) in cheese. Their presence and relative amounts give useful information about freshness, level of maturing, quality of storage and cheese typicization. The major drawback in the analysis is represented by the relevant matrix effect and the general unbalanced concentrations of the different amines in cheese. The method proposed represents an improvement with respect to an HPLC-MS/MS method already developed in this laboratory. The new method permits better sensitivities it makes use of a Waters Atlantis HILIC (150.0 mm x 2.1 mm i.d., 3 microm) stationary phase and of a mobile phase of acetonitrile and ammonium formate 50.0 mM in ultrapure water brought to pH 4.00 for formic acid, flowing under gradient conditions. The chromatographic system is interfaced with a 3200QTrap LC-MS/MS system (Applied Biosystem, Foster City, CA, USA) by a Turbo V interface equipped with Heated Nebuliser (APCI) and Turbo Ion Spray (TIS) probes. LOQ values lower than 10 microg L(-1) are obtained. The method is applied in the analysis of Castelmagno cheese.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.02.038DOI Listing

Publication Analysis

Top Keywords

determination biogenic
8
biogenic amines
8
amines cheese
8
method developed
8
method
6
cheese
5
hydrophilic interaction
4
interaction liquid
4
liquid chromatography
4
chromatography tandem
4

Similar Publications

Colorimetric and fluorescent probe assisted by smartphone app for monitoring fish freshness.

Food Chem

January 2025

College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China. Electronic address:

In this study, a novel "OFF-ON" fluorescent probe MPZ ((E)-5-((10-ethyl-2-methoxy-10H-phenothiazin-3-yl)methylene)thiazolidine-2,4-dione) based on phenothiazine is synthesized, which can rapidly (7 s) detect biogenic amines (BAs) through deprotonation, utilizing both colorimetric and fluorescent dual channels. An app for visual portable detection of fish freshness, named "Visual Evaluation", is independently developed. This app integrates several functions, including image capture, editable scanning of red, green, and blue (RGB) values, data analysis fitting, data storage, and verification.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.

View Article and Find Full Text PDF

Synthesis mechanisms, property characterization, and environmental applications of biogenic FeS: A review.

Water Res

January 2025

Baohang Environment Co., LTD, Beijing 100070, China. Electronic address:

Iron sulfide (FeS) exhibits superior reactivity toward a wide range of contaminants, making it a promising candidate for environmental remediation in various media, including surface water, wastewater, soil, and groundwater. Driven by green and sustainable development principles, efficient, low-cost, and environmentally friendly biosynthesis has attracted considerable attention and has great environmental remediation potential. This review provides a comprehensive overview of the recent advances in biogenic FeS (bio-FeS), focusing on its synthesis mechanisms, performance characterization, and environmental applications.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!