Background: Long-lasting insecticidal nets (LLINs) are advocated by WHO for protection against malaria. Of the three brands of LLINs currently approved by WHO, Olyset(R) is the only one currently granted full recommendation. With this type of LLIN, the insecticide (permethrin) is incorporated into the polyethylene fibre during manufacture and diffuses from the core to the surface, thereby maintaining surface concentrations. It has not been determined for how long Olyset nets remain protective against mosquitoes in household use.

Methods: Examples of Olyset nets, which had been in use in Tanzanian villages for seven years, were tested in experimental huts against naturally entering Anopheles gambiae and Anopheles funestus mosquitoes. Performance was compared with new Olyset nets, conventionally treated ITNs (either newly treated with alphacypermethrin or taken from local villages after 1.5 years of use) and untreated nets. All nets were artificially holed except for the seven-year Olyset nets, which had developed holes during prolonged domestic use.

Results: Anopheles funestus and An. gambiae in NE Tanzania are susceptible to pyrethroids. The new Olyset nets caused high mortality against An. funestus (73.9%) and An. gambiae (62.7%) in experimental huts. The seven-year Olyset nets caused 58.9% mortality against An. funestus and 40.0% mortality against An. gambiae. The freshly treated alphacypermethrin nets also caused high mortality against An. funestus (70.6%) and An. gambiae (72.0%); this decreased to 58.4% and 69.6% respectively after 1.5 years of use. The new Olyset nets inhibited blood-feeding by 40-50%. The 7 year Olyset nets showed no feeding inhibition over that shown by the untreated nets. The alphacypermethrin treated nets failed to inhibit blood-feeding after 1.5 years of use. However iHhhdn laboratory tunnel tests samples of all types of treated net including the 7 year Olyset inhibited blood-feeding by more than 95%.

Conclusion: After seven years of use Olyset nets were still strongly insecticidal. Mosquito mortality decreased by only 20-35% over this period. However, Olyset would not provide personal protection after seven years unless it was in good condition and all holes fully repaired.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267806PMC
http://dx.doi.org/10.1186/1475-2875-7-38DOI Listing

Publication Analysis

Top Keywords

olyset nets
40
nets
16
olyset
12
nets caused
12
mortality funestus
12
tanzanian villages
8
villages years
8
experimental huts
8
anopheles funestus
8
treated alphacypermethrin
8

Similar Publications

Insecticide resistance escalation is decreasing the efficacy of vector control tools. Monitoring vector resistance is paramount in order to understand its evolution and devise effective counter-solutions. In this study, we monitored insecticide resistance patterns, vector population bionomics and genetic variants associated with resistance over 3 years from 2021 to 2023 in Uganda.

View Article and Find Full Text PDF

Background: Malaria remains the leading cause of under-five morbidity and mortality in low- and middle-income countries. Sleeping under mosquito nets, especially insecticide-treated nets (ITNs), is one of the best ways to prevent malaria as they form a physical and chemical barrier against mosquitoes. Therefore, the present study aimed to assess not only mosquito net use, but also how environmental factors, specifically land surface temperature, contribute to malaria prevention among households with children under 5 years of age in Lao PDR.

View Article and Find Full Text PDF

To combat pyrethroid insecticide resistance, there has been widespread distribution of pyrethroid-treated bednets (ITNs) co-impregnated with piperonyl butoxide (PBO), a synergist that inhibits enzyme activity to block metabolic resistance. While PBO impacts physiological resistance, mosquito behavioural responses when attempting to blood-feed through nets may be more dependent on net characteristics, in particular the insecticide treatment and operational age of nets. These potentially interacting effects are currently not well characterised.

View Article and Find Full Text PDF

Background: Non-inferiority trials are recommended by the World Health Organization (WHO) to demonstrate that health products show comparable efficacy to that of existing standard of care. As part of the WHO Global Malaria Programme (GMP) process of assessment of malaria vector control products, a second-in-class insecticide-treated net (ITN) must be shown to be non-inferior to a first-in-class product based on mosquito mortality. The public health impact of the first-in-class pyrethroid-piperonyl butoxide (PBO) ITN, Olyset Plus, has been demonstrated in epidemiological trials in areas with insecticide-resistant mosquitoes, but there is a need to determine the efficacy of other pyrethroid-PBO nets to ensure timely market availability of nets in order to increase access to ITNs.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation insecticide-treated bed nets (ITNs), which combine new insecticides or add synergists, are essential for fighting malaria, especially in regions with mosquito resistance to traditional pyrethroid nets.
  • A study in Misungwi, Tanzania, tested the effectiveness of three types of these new nets over three years, comparing them against the standard Interceptor net; tests revealed they showed better efficacy against malaria-carrying mosquitoes.
  • While over 80% of the new nets were effective after three years for susceptible mosquitoes, their effectiveness against resistant strains declined over time, indicating the need for ongoing research and potential replacements for long-term malaria control.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!