Two cell-binding domains from FGF-2 (fibroblast growth factor-2) were shown to increase cell attachment and osteoblastic differentiation. Two synthetic peptides derived from FGF-2, namely residues 36-41 (F36; PDGRVD) and 77-83 (F77; KEDGRLL), were prepared and their N-termini further modified for ease of surface immobilization. Chitosan membranes were used in the present study as mechanical supportive biomaterials for peptide immobilization. Peptides could be stably immobilized on to the surface of chitosan membranes. The adhesion of mesenchymal stem cells to the peptide (F36 and F77)-immobilized chitosan membrane was increased in a dose-dependent manner and completely inhibited by soluble RGD (Arg-Gly-Asp) and anti-integrin antibody, indicating the existence of an interaction between F36/F77 and integrin. Peptide-immobilized chitosan supported human bone-marrow-derived mesenchymal-stem-cell differentiation into osteoblastic cells, as demonstrated by alkaline phosphate expression and mineralization. Taken together, the identified peptide-immobilized chitosan membranes were able to support cell adhesion and osteoblastic differentiation; thus these peptides might be useful as bioactive agents for osteoblastic differentiation and surface-modification tools in bone regenerative therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BA20070169 | DOI Listing |
Int J Biol Macromol
January 2025
School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia. Electronic address:
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center of Nanoscience, Nanotechnology, and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
B-cell non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy, capable of invading the brain, meninges, and nerve roots of the brain and spine, leading to high lethality. Herein, we designed and developed novel nanostructures for the first time by biofunctionalizing chitosan with two specific antibodies (i.e.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Medical Affairs, Curie Sciences, Samastipur, Bihar, India.
Adv Mater
January 2025
Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Engineering, Modeling, and Applied Sciences (CECS), Federal University of ABC (UFABC), São Paulo 09210-580, Brazil. Electronic address:
The scarcity of water resources and their pollution are vital to modern civilization. Thus, adsorptive membranes are promising candidates to be applied in the filtration systems to improve the water quality. In summary, this study investigated the effect of chitosan (CS) in the morphological, chemical, and physical aspects of PLA-based membranes incorporating chitosan obtained by electrospinning process, their adsorption behavior in multielement aqueous systems containing Cr, Cu, Zn, Mn , Ni, and Cd in pH 4, and the possible removal mechanism on the composite electrospun membrane's surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!