A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of low-fouling ethylene glycol containing plasma polymer films. | LitMetric

Low-protein-fouling poly(ethylene glycol) (PEG-like) plasma polymer films were prepared using radio frequency glow discharge polymerization of diethylene glycol dimethyl ether (DGpp) on top of a heptylamine plasma polymer primer layer. By varying the plasma deposition conditions, the chemistry of the DGpp film was influenced, especially in regard to the level of ether content, which in turn influenced the relative levels of bovine serum albumin and lysozyme protein fouling. Surface potential measurements indicated that these surfaces carried a net negative charge. While protein fouling remained low ( approximately 10 ng/cm2), there was a slightly higher level of the positively charged protein adsorbed on these films than the negative protein. The interaction forces measured between a silica spherical surface on both "high"- and "low"-protein-fouling DGpp films were all repulsive and short ranged (2-3 nm). There was no correlation between the surface forces measured for high- and low-protein-fouling DGpp films. Thus, it appears that enthalpic effects are very important in reducing protein adsorption. We therefore conclude that it is the concentration of residual, ethylene glycol containing species that are the crucial parameter determining protein resistance due to a combination of both entropic and enthalpic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la702689tDOI Listing

Publication Analysis

Top Keywords

plasma polymer
12
ethylene glycol
8
polymer films
8
protein fouling
8
forces measured
8
dgpp films
8
enthalpic effects
8
protein
6
films
5
characterization low-fouling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!