Goals, Scope And Background: Changing environmental conditions and handling stress are well known to cause chronic or acute stress situations in fish with subsequent infections. These requires a therapy by means of antibiotics and chemicals. In contrast to the huge number of pathogens, only a few substances are permitted for application as therapeutics in German aquaculture. Hence, there emerges an urgent need for highly effective and residueless alternatives.
Main Features: The prophylactic stimulation and training of the defense system of fish by alternative approaches becomes increasingly necessary. One approach is the application of dissolved humic substances (HS) of natural or artificial origin. For example, there exist several reports on the positive effect of HS to fishes. These effects shall be considered in detail. Furthermore, the impact of HS on the constitution of parasites and pathogens will be displayed. The reports on this issue are diverse, if not inconsistent. We try to shed some light on these discrepancies. The last aspect covered by this review is the outdated paradigm that calcium ions act as antidotes. In the presence of HS, even the opposite effect may occur.
Approach: To overcome old paradigms on HS and their potential interactions with fish and fish parasites, we reviewed recent international literature, as well as 'grey' literature. We also include results from own former and ongoing studies.
Results And Discussion: HS are able to increase the physiological condition of the individuals and to reduce adverse physiological and histological consequences caused by stress; the mechanism behind remains obscure. HS detoxify heavy metals and organic pollutants. Damages caused by several fish pathogens, such as bacteria and parasites, can be repaired more quickly in the presence of HS. Some parasites--mainly fungi--appear to be directly affected by HS. Comparing the fungicidal effects of HS from various sources, evidence is increasing that the aliphatic moiety may be the effective structures. However, further research is necessary to relate more physiological and anti-pathogenic effects to the chemical characteristics of HS.
Conclusions: HS are not real alternatives to strong traditional therapeutics. However, they show different advantages in repairing secondary, stress induced damages in fish. The ecophysiological relevance of HS in either aquatic systems or aquaculture is getting conspicuously.
Perspectives: The lack of therapeutic and antiparasitic substances in aquaculture requires new strategies and ways of thinking. The search for alternatives to the 'traditional' chemical therapeutics calls for the intensive research. Inevitably, this search will lead to an intensive contemplation on HS as 'health promoting substances' and/or even therapeutics. Basic research is needed to detect the functional groups of the HS responsible for the effects observed. Health promoting effects of first investigations made in vitro to affect pathogens via application of HS and several field studies with HS raises hopes for a broader utilisation of HS to reduce stress consequences in fish and fish pathogens residuelessly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1065/espr2007.08.448 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China.
This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, Guangxi, China. Electronic address:
To enhance the retention of compost nutrients, specifically in nitrogen metabolism and humification, compound microbial agents were added during the aerobic composting of bagasse pith and buffalo manure. The introduction of the microbial agent successfully colonized the mixture, boosted the degradation capacity of organic matter, and facilitated the formation of nitrogenous substances and humic substances (HSs). The incorporation of a composite microbial inoculum led to a substantial rise in total Kjeldahl nitrogen (TKN) by 62.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!