[Effect of different titanium surfaces on F-actin cytoskeleton of osteoblast].

Hua Xi Kou Qiang Yi Xue Za Zhi

Dept of Prosthodontics, College of Stomatology, Kunming Medical College, Kunming 650031, China.

Published: December 2007

Unlabelled: OBJECTIVE To evaluate the effects of grooved, alkali- and heat-treated, acid-etched and TiO2 blasted surfaces of titanium substrates on F-actin cytoskeleton of osteoblasts in vitro.

Methods: Osteoblasts derived from fetal rat calvarial were cultured on 6 different commercially pure titanium discs-grooved(G), sandblasted (SB), sand-blasted and acid-etching (SLA) surfaces and alkali- and heat-treated (AH1, AH2, AH3) surfaces. For F-actin cytoskeleton measurement, osteoblasts whose filamentous actin was stained with phalloidin-TRITC were cultured for 1, 2, 4, 12 h, evaluated by CLSM observation.

Results: Osteoblasts attached to the different types of surfaces after 1 hour culture were similar. The actin cytoskeleton formed a ring of cortical filaments around the nucleus after 1 hour on SB, AH2, AH3, SLA surfaces. Actin filaments condensed along edges of pits. The actin filaments of seeded cells were spread after 2 h. The actin filaments on G formed bundles around the nucleus. The filaments began to parallel to the grooves. On AH1, the fibres formed a ring of cortical filaments around the nucleus with some cytoplasmic fibres radially oriented. On AH2, AH3, SB, the fibres orignised in a cytoplasmic meshwork with fibres which terminate at the ridge of depressions. The cell were suspending itself over the depressed areas. Actin filaments on SB were distinct and well formed that were oriented paralled to one another and the long axis of cells. After 4 h, actin filaments appeared organised in a parallel to one another and the long axis of cells. After 12 h, the actin filaments on all surfaces were well spread and were oriented paralled to another and to the long axis of the cell. The filaments formed bundles which reached to holes or adhered to the ridge of raised points, suspending cells over depressed areas.

Conclusion: After 12 h, the actin filaments on all surfaces were well spread and were oriented parallel to another and to the long axis of the cell. It was concluded that F-actin cytoskeleton of osteoblasts were spread best on SB surfaces among all surfaces.

Download full-text PDF

Source

Publication Analysis

Top Keywords

actin filaments
28
f-actin cytoskeleton
16
long axis
16
ah2 ah3
12
filaments
11
surfaces
10
actin
9
surfaces f-actin
8
alkali- heat-treated
8
cytoskeleton osteoblasts
8

Similar Publications

Tension-induced organelle stress: an emerging target in fibrosis.

Trends Pharmacol Sci

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

A variety of potential biological roles of mechanical forces have been proposed in the field of cell biology. In particular, mechanical forces alter the mechanical conditions within cells and their environment, exerting a strong effect on the reorganization of the actin cytoskeleton. Single-molecule imaging studies have provided evidence that an actin filament may act as a mechanosensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!