Variable resolution reconstruction for Cartesian data acquired with nonconstant sampling density in phase-encoding direction.

Magn Reson Med

Experimental Cardiovascular Imaging, Department of Internal Medicine II, University Hospital Ulm, University of Ulm, Ulm, Germany.

Published: March 2008

The variable-kernel extent technique is applied for providing local high-resolution images from k-space data sampled on a Cartesian sampling grid with gradually decreasing sampling density in the phase-encoding direction. The approach is based on a variable spatial resolution reconstruction technique providing gradually decreasing resolution in the phase-encoding direction with increasing distance to the image center, while preserving full spatial resolution in a narrow slab centered in spatial domain. Reconstruction is performed by a variable convolution kernel gridding technique. The convolution kernel width is chosen proportional to the k-space sampling spacing to utilize the respective apodization in the image for reduction of the aliasing artifacts. Application of this technique to carotid artery wall imaging shows the potential of the technique for a significant reduction of image acquisition time without sacrificing image quality in the region of the carotid arteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.21538DOI Listing

Publication Analysis

Top Keywords

phase-encoding direction
12
resolution reconstruction
8
sampling density
8
density phase-encoding
8
gradually decreasing
8
spatial resolution
8
convolution kernel
8
technique
5
variable resolution
4
reconstruction cartesian
4

Similar Publications

Brain functional connectivity patterns exhibit distinctive, individualized characteristics capable of distinguishing one individual from others, like fingerprint. Accurate and reliable depiction of individualized functional connectivity patterns during infancy is crucial for advancing our understanding of individual uniqueness and variability of the intrinsic functional architecture during dynamic early brain development, as well as its role in neurodevelopmental disorders. However, the highly dynamic and rapidly developing nature of the infant brain presents significant challenges in capturing robust and stable functional fingerprint, resulting in low accuracy in individual identification over ages during infancy using functional connectivity.

View Article and Find Full Text PDF

Purpose: This study aimed to characterize spinal cord microstructure in healthy subjects using high angular resolution diffusion imaging (HARDI) and tractography.

Methods: Forty-nine healthy subjects (18-50 years, divided into 2 age groups) were included in a prospective study. HARDI of the cervical spinal cord were acquired using a 3T MRI scanner with: 64 directions, b‑value: 1000s/mm, reduced field-of-view (zonally magnified oblique multi-slice), and opposed phase-encoding directions.

View Article and Find Full Text PDF
Article Synopsis
  • MRI-only radiotherapy helps reduce registration errors that could lead to incorrect dose delivery, but systematic geometric distortion (SGD) from factors like magnetic field inhomogeneity must be addressed.
  • The study assessed SGD in 1.5T MRI simulations using a 3D geometric phantom and analyzed its effects on dosimetric accuracy for ten prostate cancer patients treated with volumetric modulated arc radiotherapy (VMAT).
  • Results showed that SGD increased with distance from the isocenter, and while dosimetric accuracy was generally high (under 2% error for most structures), the bladder and rectum exhibited exceptions, underscoring the need for SGD assessment in quality assurance before treatment planning.
View Article and Find Full Text PDF

Purpose: To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers.

Methods: A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI).

View Article and Find Full Text PDF

This pilot study aimed to investigate the interest of high angular resolution diffusion imaging (HARDI) and tractography of the spinal cord (SC) in the management of patients with intramedullary tumors by providing predictive elements for tumor resection. Eight patients were included in a prospective study. HARDI images of the SC were acquired using a 3T MRI scanner with a reduced field of view.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!