Background And Objectives: Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers.

Materials And Methods: Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses.

Results: Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2).

Conclusion: The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.20601DOI Listing

Publication Analysis

Top Keywords

micro-fractional ablative
8
ablative skin
8
skin resurfacing
8
2940 erbium
8
clinical observations
8
periorbital perioral
8
perioral wrinkles
8
wrinkle reduction
8
erbium
5
skin
4

Similar Publications

Micro-fractional, directional skin tightening: A porcine model.

Lasers Surg Med

March 2016

Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114.

Background And Objective: Skin changes are among the most visible signs of aging. Fractional ablative lasers improve skin quality by making small skin wounds that heal rapidly without scarring. While they improve skin texture and discoloration, there is minimal effect on skin laxity.

View Article and Find Full Text PDF

Micro-fractional epidermal powder delivery for improved skin vaccination.

J Control Release

October 2014

Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA. Electronic address:

Skin vaccination has gained increasing attention in the last two decades due to its improved potency compared to intramuscular vaccination. Yet, the technical difficulty and frequent local reactions hamper its broad application in the clinic. In the current study, micro-fractional epidermal powder delivery (EPD) is developed to facilitate skin vaccination and minimize local adverse effects.

View Article and Find Full Text PDF

Background And Objectives: Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers.

Materials And Methods: Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!