Nicotiana tabacum plants were transformed with the 57-kDa read-through domain of the replicase gene of Tobacco rattle virus (TRV) isolate SYM. From a total of six lines containing the viral transgene, four displayed various levels of resistance to TRV infection. Transgenic plants from line 81G were highly resistant to foliar rub-inoculation with the homologous isolate, or with isolates TRV-PpK20 and TRV-PLB, which are almost identical to TRV-SYM in RNA1 sequence. Moreover, 81G plants were moderately resistant to the serologically and genetically distinct, highly pathogenic isolate TRV-GR. Resistance characteristics of line 81G remained stable over six generations. No unambiguous correlation was established between number of transgene insertion loci and level of resistance. Transgene-specific mRNA was clearly detected in plants from susceptible lines but only at an early developmental stage in resistant plants, indicating the operation of a RNA silencing resistance mechanism. Following challenge using viruliferous vector nematodes carrying TRV-PpK20 or by rub inoculation of roots, 81G plants did not show any symptoms and virus was not detected in leaves. However, virus was detected in roots but without apparent effects on plant growth and often at low concentration. When challenged with nematodes carrying TRV-GR, symptoms in aerial parts of 81G plants were less severe and much delayed compared to non-transgenic plants, although younger plants showed less resistance than older ones. No difference was detected in transgene transcript accumulation between leaves and roots of 81G plants. This is the first work reporting a broad level of pathogen derived resistance against two geographically and genetically distinct TRV isolates transmitted directly by their nematode vectors and provides further insight into the expression of transgenic resistance against naturally transmitted soil-borne viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11248-008-9176-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!