A precise characterisation of microreactors can be achieved by determining the residence time distribution as one of the most important flow characteristics. An approach specially designed for microreactor applications was developed, which employs a tracer 'injection' using the optical activation of a caged fluorescent dye. Furthermore, the effect of the laminar flow on the determination of the residence time distribution in microreactors has been taken into account during the measurements and their interpretation to fulfill the requirements of the so-called 'mixing-cup-problem' on the microscale. Residence time distributions for an intricately structured thin microreactor were determined for different velocities. The ideality of the stimulus signal generated by the newly introduced technique is demonstrated for an analytically well-defined straight channel and compared with a signal derived from deconvolution of non-ideal input signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b714190d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!