The poor outcome of somatic cell nuclear transfer (SCNT) is thought to be a consequence of incomplete reprogramming of the donor cell. The objective of this study was to investigate the effects of treatment with S-adenosylhomocysteine (SAH) a DNA demethylation agent, on DNA methylation levels and X-chromosome inactivation status of bovine female fibroblast donor cells and the subsequent impact on developmental potential after SCNT. Compared with non-treated controls, the cells treated with SAH revealed (i) significantly (P<0.05) reduced global DNA methylation, (ii) significantly (approximately 1.5-fold) increased telomerase activity, (iii) diminished distribution signals of methylated histones H3-3mK9 and H3-3mK27 on the presumptive inactive X-chromosome (Xi), (iv) alteration in the replication pattern of the Xi, and (v) elevation of transcript levels for X-chromosome linked genes, ANT3, MECP2, XIAP, XIST, and HPRT. SCNT embryos produced with SAH-treated donor cells compared with those derived from untreated donor cells revealed (i) similar cleavage frequencies, (ii) significant elevation in the frequencies of development of cleaved embryos to hatched blastocyst stage, and (iii) 1.5-fold increase in telomerase activity. We concluded that SAH induces global DNA demethylation that partially reactivates the Xi, and that a hypomethylated genome may facilitate the nuclear reprogramming process.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-07-0442DOI Listing

Publication Analysis

Top Keywords

x-chromosome inactivation
8
somatic cell
8
cell nuclear
8
nuclear transfer
8
s-adenosylhomocysteine treatment
4
treatment adult
4
adult female
4
female fibroblasts
4
fibroblasts alters
4
alters x-chromosome
4

Similar Publications

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Women are disproportionately affected by Alzheimer's disease (AD) and exhibit greater AD neuropathology than men. Women possess two X chromosomes, with one randomly silenced across each cell for dosage compensation. X chromosome inactivation (XCI) is not complete, and XCI-escaping genes provide a promising avenue of discovery for biological pathways driving sex-specific AD risk.

View Article and Find Full Text PDF

Background: Late Onset Alzheimer's Disease (LOAD) is the most common neurodegenerative disorder. Carriers of an ɛ4 allele of the apolipoprotein E gene (APOE) have significantly increased risk of developing LOAD. LOAD is also strongly sex biased.

View Article and Find Full Text PDF

Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.

Methods Mol Biol

January 2025

Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.

Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!