An amperometric immunosensor for osteoproteogerin based on gold nanoparticles deposited conducting polymer.

Biosens Bioelectron

School of Mechanical Engineering and MEMS/Nano Technology Center, Pusan National University, Pusan 609-735, South Korea.

Published: June 2008

AI Article Synopsis

  • An amperometric immunosensor was developed for detecting osteoproteogerin (OPG) by attaching a monoclonal antibody to gold nanoparticles on a conductive polymer.
  • The size of the gold nanoparticles was controlled during the electrochemical deposition and characterized using advanced imaging techniques, confirming the successful attachment of the antibody.
  • The immunosensor operates on a competitive immunoassay principle with a detection range of 2.5 to 25 pg/ml and a lower detection limit of 2 pg/ml, effectively identifying OPG in real human samples.

Article Abstract

An amperometric immunosensor was fabricated for the detection of osteoproteogerin (OPG) by covalently immobilizing a monoclonal OPG antibody (anti-OPG) onto the gold nanoparticles (AuNPs) deposited functionalized conducting polymer (5,2':5',2''-terthiophene-3'-carboxylic acid). AuNPs were electrochemically deposited onto the conducting polymer using cyclic voltammetry. The particle size of deposited AuNPs was controlled by varying the scan rate and was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The immobilization of anti-OPG was also confirmed using XPS. The principle of immunosensor was based on a competitive immunoassay between free-OPG and labeled-OPG for the active sites of anti-OPG. HRP was used as a label that electrochemically catalyzes the H(2)O(2) reduction. The catalytic reduction was monitored amperometrically at -0.4V vs. Ag/AgCl. The immunosensor showed a linear range between 2.5 and 25pg/ml and the detection limit was determined to be 2pg/ml. The proposed immunosensor was successfully applied for real human samples to detect OPG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2008.01.016DOI Listing

Publication Analysis

Top Keywords

conducting polymer
12
amperometric immunosensor
8
gold nanoparticles
8
deposited conducting
8
immunosensor osteoproteogerin
4
osteoproteogerin based
4
based gold
4
deposited
4
nanoparticles deposited
4
polymer amperometric
4

Similar Publications

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

Conjugated Microporous Polymer-Based Fluorescent Probe for Selective Detection of Nitro-explosives and Metal Nitrates.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China.

The sensitive and selective identification of nitroaromatic explosives and industrially ubiquitous nitrates, which are harmful to the environment, is crucial from the viewpoints of security and environmental remediation. New multifunctional fluorescent porous materials that can sense nitro-explosives and nitrates are under continuous development. To this end, this study synthesizes 3,10,15-/-3,10,16-tribromotrinaphtho[3.

View Article and Find Full Text PDF

Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction.

Angew Chem Int Ed Engl

January 2025

Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.

Precise sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!