The in vitro activity of daptomycin was evaluated against 360 multidrug-resistant Staphylococcus aureus isolates (including hospital-acquired isolates) and multidrug-susceptible community-acquired methicillin-resistant S. aureus with known virulence genes. All isolates were inhibited at

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diagmicrobio.2008.01.012DOI Listing

Publication Analysis

Top Keywords

vitro activity
8
activity daptomycin
8
multidrug-resistant staphylococcus
8
staphylococcus aureus
8
aureus virulence
8
community-acquired methicillin-resistant
8
daptomycin multidrug-resistant
4
aureus
4
aureus aureus
4
virulence factors
4

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

How Should We Use Hyaluronidase for Dissolving Hyaluronic Acid Fillers?

J Cosmet Dermatol

January 2025

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.

Background: Hyaluronic acid (HA) fillers are commonly used in esthetic medicine for facial contouring and rejuvenation. However, complications such as overcorrection, vascular occlusion, and irregular filler distribution necessitate the use of hyaluronidase to dissolve the fillers. This study aimed to evaluate the efficacy of hyaluronidase in degrading different types of HA fillers and provide clinical guidelines for its use based on filler type, dosage, and application techniques.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening.

View Article and Find Full Text PDF

The unexpected PD-L1 suppression function of celery-derived extracellular vesicles improves lung cancer chemotherapy efficacy.

Extracell Vesicles Circ Nucl Acids

November 2024

State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.

The article explores celery-derived extracellular vesicles (CDEVs), characterized by high cellular uptake, low immunogenicity, and high stability, as a therapeutic strategy for antitumor nanomedicines. The methods employed in this study include cell experiments such as co-culture, Western Blot, and flow cytometry. experiments were conducted in C57BL/6 tumor-bearing mice subcutaneously injected with Lewis lung carcinoma (LLC) cells.

View Article and Find Full Text PDF

Virtual screening and evaluation of bioactive peptides from as potential HMGCR inhibitors for hyperlipidemia treatment.

Front Nutr

December 2024

Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China.

Introduction: Hyperlipidemia remains a major disease threatening global public health. The morbidity and mortality associated with cardiovascular diseases have been increasing. The inhibition of 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a key enzyme in the cholesterol synthesis pathway, can effectively reduce cholesterol levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!