Detection of anti-drug antibodies (ADA) can be difficult, if not impossible, in the presence of drug in the sample. This is a particular concern with therapeutic monoclonal antibodies (mAbs), which have typically longer half-lives than other proteins. For detection of ADA in presence of high drug concentrations, assay choice is limited to ELISA-like methods, capable of incorporating acid dissociation procedures to separate drug-ADA immune complexes. To our knowledge, Biacore assays have not been shown to be directly compatible with acid dissociation procedures, until now. As a consequence, steps to ensure adequate clearance of the drug are prerequisite to enable sensitive detection of ADA. Here we describe the development of a novel, rapid and highly drug tolerant Biacore method that uses an acid dissociation step to detect ADA in the presence of excess drug in human serum. Removal of drug after acid treatment is not required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2008.01.010DOI Listing

Publication Analysis

Top Keywords

acid dissociation
12
acid treatment
8
detection ada
8
ada presence
8
dissociation procedures
8
drug
6
acid
5
improvement drug
4
drug tolerance
4
tolerance immunogenicity
4

Similar Publications

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.

View Article and Find Full Text PDF

Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + HO and CO + H channels in the ground state (S) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm.

View Article and Find Full Text PDF

Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.

View Article and Find Full Text PDF

2H-NMR as a Practical Tool for Following MOF Formation: A Case Study of UiO-66.

Angew Chem Int Ed Engl

January 2025

Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.

Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!