Both inorganic and organic selenium supplements can decrease brain monoamine oxidase B enzyme activity in adult rats.

Br J Nutr

Department of Food and Nutrition, Chung Hwa University of Medical Technology, no. 89, Wenhwa 1st Street, Tainan County 717, Taiwan.

Published: September 2008

It has been observed that the levels of brain monoamine oxidase B (MAO-B) increase during ageing. MAO catalyses the oxidative deamination of neurotransmitters, in which the by-product H2O2 is subsequently generated. Se exists naturally in inorganic and organic forms and is considered to play a key role in antioxidation functioning. The objective of the present study was to investigate two chemical forms of Se compounds for their inhibition effect on rat brain MAO-B. The total antioxidant capacity and lipid peroxidation of rats were also examined. The rats (age 7 weeks) were divided into four groups: the control group, tocopherol group (T group, positive control), selenite group (SE group, representing the inorganic Se group) and seleno-yeast group (SY group, representing the organic Se group). The rats were fed for 11 weeks with normal diets and 12 weeks with test diets. The serum total antioxidant capacity of the SE and SY groups was significantly higher than that in the control and T groups. In rat brains and livers, the lipid peroxidation levels were significantly decreased in the T, SE and SY groups. MAO-B activity showed a significant decrease in the T, SE and SY groups in rat brains but no significant change could be noted in the rat livers. In conclusion, the present study indicates that inorganic or organic Se supplementation can decrease the brain MAO-B enzyme activity in adult rats and can be accomplished by the effect of the Se antioxidation capability.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114508911594DOI Listing

Publication Analysis

Top Keywords

inorganic organic
12
group group
12
group
9
decrease brain
8
brain monoamine
8
monoamine oxidase
8
enzyme activity
8
activity adult
8
adult rats
8
brain mao-b
8

Similar Publications

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

Purpose: Malaria remains a major global health challenge, particularly in sub-Saharan Africa and low- and middle-income countries (LMICs), contributing substantially to mortality and morbidity rates. In resource-limited settings, access to specialized diagnostic tests is often restricted, making basic blood analysis a valuable diagnostic tool. This study investigated the correlation between malaria infection and full blood count values in a rural region of Ghana during the 2022 rainy season, aiming to highlight diagnostic insights available from routine blood analyses.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!