Background: mce3 is one of the four virulence-related mce operons of Mycobacterium tuberculosis. In a previous work we showed that the overexpression of Mce3R in Mycobacterium smegmatis and M. tuberculosis abolishes the expression of lacZ fused to the mce3 promoter, indicating that Mce3R represses mce3 transcription.

Results: We obtained a knockout mutant strain of M. tuberculosis H37Rv by inserting a hygromycin cassette into the mce3R gene. The mutation results in a significant increase in the expression of mce3 genes either in vitro or in a murine cell macrophages line as it was determined using promoter-lacZ fusions in M. tuberculosis. The abundance of mce1, mce2 and mce4 mRNAs was not affected by this mutation as it was demonstrated by quantitative RT-PCR. The mce3R promoter activity in the presence of Mce3R was significantly reduced compared with that in the absence of the regulator, during the in vitro culture of M. tuberculosis.

Conclusion: Mce3R repress the transcription of mce3 operon and self regulates its own expression but does not affect the transcription of mce1, mce2 and mce4 operons of M. tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277422PMC
http://dx.doi.org/10.1186/1471-2180-8-38DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
8
mce1 mce2
8
mce2 mce4
8
mce3r
7
tuberculosis
6
mce3
5
study role
4
role mce3r
4
mce3r transcription
4
transcription mce
4

Similar Publications

The impact of heteroresistance on tuberculosis (TB) treatment outcomes is unclear, as is the role of different rifampin and isoniazid exposures on developing resistance mutations. Hollow fiber system model of TB (HFS-TB) units were inoculated with drug-susceptible () and treated with isoniazid and rifampin exposure identified in a clinical trial as leading to treatment failure and acquired drug resistance. Systems were sampled for drug concentration measurements, estimation of total and drug-resistant , and small molecule overlapping reads (SMOR) analysis for the detection of heteroresistance.

View Article and Find Full Text PDF

Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.

View Article and Find Full Text PDF

Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.

View Article and Find Full Text PDF

Introduction Tuberculosis (TB) is an infectious disease caused by . Various studies have established an association between diabetes mellitus (DM) and pulmonary TB. This study describes the prevalence of DM and its predictors in smear-positive TB patients.

View Article and Find Full Text PDF

Rifamycin and its derivatives are natural products that belong to the class of antibiotic-active polyketides and have significant therapeutic relevance within the therapy scheme of tuberculosis, a worldwide infectious disease caused by . Improving the oral bioavailability of rifamycin B was achieved through semisynthetic modifications, leading to clinically effective derivatives such as rifampicin. Genetic manipulation of the rifamycin polyketide synthase gene cluster responsible for the production of rifamycin B in the strain S699 represents a promising tool to generate new rifamycins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!