A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Individual gold dimers investigated by far- and near-field imaging. | LitMetric

Individual gold dimers investigated by far- and near-field imaging.

J Microsc

ICFO - Institut de Ciències Fotòniques, 08860 Castelldefels, Barcelona, Spain.

Published: February 2008

Plasmon resonances in 3D nanoparticle arrangements can produce strong localized optical fields, which are of importance for any application involving interaction of light with subwavelength volumes of matter down to the molecular level. In particular, remarkable field enhancement and confinement occur in a dimer geometry formed by two identical closely spaced particles. Although, recent advances in nanofabrication have rendered the fabrication of complex plasmon architectures more accessible, addressing their local fields in a nonperturbative fashion remains not straightforward, because metallic nanostructures are rather sensitive to their local environment. Here we study gold dimers fabricated by e-beam lithography. Individual dimers are imaged both by far- and near-field methods. First, the near-field electromagnetic interaction in an ensemble of dimers is investigated by scattering spectroscopy, using dark field microscopy. Next, to probe their local field, we explore the luminescence of individual gold dimers utilizing a confocal microscope with single molecule detection sensitivity. We provide a statistical analysis of the dimer luminescence for different incident polarizations, with direct comparison to single particles (monomers). Finally, the near-field transmission of the resonant dimers is mapped with a subwavelength resolution using polarized controlled near-field scanning optical microscopy. Surprisingly, no clear evidence of the high mode density in the dimer gap is observed. This result may be attributed to the limited coupling of the field emitted by the aperture probe to the dimer mode.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2818.2008.01895.xDOI Listing

Publication Analysis

Top Keywords

gold dimers
12
individual gold
8
dimers investigated
8
far- near-field
8
dimers
6
near-field
5
investigated far-
4
near-field imaging
4
imaging plasmon
4
plasmon resonances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!