Salivary glands are useful gene transfer target sites for the production of therapeutic proteins, and can secrete proteins into both saliva and the bloodstream. The mechanisms involved in this differential protein sorting are not well understood, although it is believed, at least in part, to be based on the amino acid sequence of the encoded protein. We hypothesized that a transgenic protein, human erythropoietin (hEpo), normally sorted from murine salivary glands into the bloodstream, could be redirected into saliva by fusing it with human growth hormone (hGH). After transfection, the hEpo-hGH fusion protein was expressed and glycosylated in both HEK 293 and A5 cells. When packaged in an adenovirus serotype 5 vector and delivered to murine submandibular cells in vivo via retroductal cannulation, the hEpo-hGH fusion protein was also expressed, albeit at approximately 26% of the levels of hEpo expression. Importantly, in multiple experiments with different cohorts of mice, the hEpo-hGH fusion protein was sorted more frequently into saliva, versus the bloodstream, than was the hEpo protein (p < 0.001). These studies show it is possible to redirect the secretion of a transgenic constitutive pathway protein from salivary gland cells after gene transfer in vivo, a finding that may facilitate developing novel treatments for certain upper gastrointestinal tract disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258197 | PMC |
http://dx.doi.org/10.1089/hum.2007.0136 | DOI Listing |
Calcif Tissue Int
January 2025
National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA.
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.
Methods: Eighteen castrated Guanzhong dairy goats (44.
J Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFArch Gerontol Geriatr
December 2024
Neurology Ward 1, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Qingxiu District, Nanning, 530001, China. Electronic address:
Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.
Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!