Microcontact printed antibodies on gold surfaces: function, uniformity, and silicone contamination.

Langmuir

Department of Bioengineering and National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, Washington 98195, USA.

Published: April 2008

The function of microcontact printed protein was investigated using surface plasmon resonance (SPR) imaging, X-ray photoelectron spectroscopy spectroscopy (XPS), and XPS imaging. We chose to analyze a model protein system, the binding of an antibody from solution to a microcontact printed protein antigen immobilized to a gold surface. SPR imaging experiments indicated that the microcontact printed protein antigen was less homogeneous, had increased nonspecific binding, and bound less antibody than substrates to which the protein antigen had been physically adsorbed. SPR images of substrates contacted with a poly(dimethylsiloxane) stamp inked with buffer alone (i.e., no protein) revealed that significant amounts of silicone oligomer were transferred to the surface. The transfer of the silicone oligomer was not homogeneous, and the oligomer nonspecifically bound protein (BSA and IgG) from solution. XPS spectroscopy and imaging were used to quantify the amount of silicon (due to the presence of silicone oligomer), as well as the amounts of other elements, transferred to the surface. The results suggest that the silicone oligomer introduced by the printing process reduces the overall binding capacity of the microcontact-printed protein compared to physically adsorbed protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la703035aDOI Listing

Publication Analysis

Top Keywords

microcontact printed
16
silicone oligomer
16
printed protein
12
protein antigen
12
protein
9
spr imaging
8
physically adsorbed
8
transferred surface
8
silicone
5
oligomer
5

Similar Publications

In situ monitoring of small molecule diffusion at solid-solid interfaces is challenging, even with sophisticated equipment. Here, novel chromogenic photonic crystal detectors enabled by integrating bioinspired structural color with stimuli-responsive shape memory polymer (SMP) for detecting trace amounts of small molecule interfacial diffusion are reported. Colorless macroporous SMP membranes with deformed macropores can recover back to the "memorized" photonic crystal microstructures and the corresponding iridescent structural colors when triggered by diffused small molecules.

View Article and Find Full Text PDF

A self-propulsion Janus gallium (Ga)/magnesium (Mg) bimetallic micromotor is designed with favorable biocompatibility and antimicrobial properties as a therapeutic strategy for periodontitis. The Janus Ga/Mg micromotors are fabricated by microcontact printing technique to asymmetrically modify liquid metallic gallium onto magnesium microspheres. Hydrogen bubbles produced by the magnesium-water reaction can provide the driving performance of up to 31.

View Article and Find Full Text PDF

Cell confinement by micropatterning induces phenotypic changes in cancer-associated fibroblasts.

Acta Biomater

January 2025

Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore. Electronic address:

Article Synopsis
  • * The research explored how the shape and confinement of CAFs on specially designed surfaces influence their morphology and gene expression, finding that certain conditions led to changes toward more inflammatory and desmoplastic CAF types.
  • * The findings suggest that the way CAFs are physically arranged affects their response to cancer therapies, suggesting that understanding CAF plasticity can help develop better treatment strategies.
View Article and Find Full Text PDF

Rapid Whole-Plate Cell and Tissue Micropatterning Using a Budget 3D Resin Printer.

ACS Omega

October 2024

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.

The ability to precisely pattern cells and proteins is crucial in various scientific disciplines, including cell biology, bioengineering, and materials chemistry. Current techniques, such as microcontact stamping, 3D bioprinting, and direct photopatterning, have limitations in terms of cost, versatility, and throughput. In this Article, we present an accessible approach that combines the throughput of photomask systems with the versatility of programmable light patterning using a low-cost consumer LCD resin printer.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss and progressive deterioration of cognitive functions. Being able to identify reliable biomarkers in easily available body fluids such as blood plasma is vital for the disease. To achieve this, we used a technique that applied human plasma to organotypic brain slice culture via microcontact printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!