The effects of surface stress and mass loading upon the adsorption of polyelectrolytes onto flexible silicon micromechanical cantilever sensors (MCSs) were studied in situ. A self-assembled monolayer of 2-mercaptoethylamine chloride (2-MEA) on gold was used to achieve single-side adsorption on the MCS. Such a preparation gave a positive surface potential, whereas a bare SiOx surface gave a negative surface potential. Wide scan X-ray photoelectron spectroscopy confirmed that the adsorption of polystyrenesulfonate (PSS) and polyallylamine hydrochloride (PAH) followed the general rule expected from the electrostatic interaction between the substrate and the polyelectrolyte, whereas the adsorption polyethyleneimine (PEI) did not. The adsorption of PAH on SiO(x) from a 3 mM water solution containing 1 M NaCl was associated with a deflection of the MCS toward the polyelectrolyte monolayer (tensile surface stress) owing to the hydrogen bonding between neighboring amino groups. Here, a surface stress change of 1.4 +/- 0.1 N/m was estimated. The adsorption of PSS from a 3 mM water solution containing 1 M NaCl on a 2-MEA surface induced a deflection of the MCS away from the polyelectrolyte layer (compressive stress), toward the SiO(x) side. Here, a surface stress change of 3.1 +/- 0.3 N/m was determined. The formation of a PAH layer on top of the PSS layer resulted in a deflection of the MCS toward the PAH layer. This indicated that the adjacent PSS layer was deswelling, corresponding to a surface stress change of 0.5 +/- 0.1 N/m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la7028214 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
Heat exposure in outdoor work environments poses risks to worker health and productivity. Engineering solutions like cool surfaces that increase surface albedo and reduce temperatures may help mitigate these impacts. We conducted detailed micrometeorological modeling to analyze surface characteristics and heat exposure for outdoor workers at San Francisco International Airport (SFO) under current conditions and three hypothetical albedo-increase scenarios.
View Article and Find Full Text PDFSoil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.
View Article and Find Full Text PDFBiophys Rev
December 2024
Department of Physics, Lancaster University, Lancaster, LA1 4YB UK.
Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.
View Article and Find Full Text PDFThe production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!