A new method for analyzing a structure-activity relationship is proposed. By use of a simple quantitative index, one can readily identify "structure-activity cliffs": pairs of molecules which are most similar but have the largest change in activity. We show how this provides a graphical representation of the entire SAR, in a way that allows the salient features of the SAR to be quickly grasped. In addition, the approach allows us view the SARs in a data set at different levels of detail. The method is tested on two data sets that highlight its ability to easily extract SAR information. Finally, we demonstrate that this method is robust using a variety of computational control experiments and discuss possible applications of this technique to QSAR model evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ci7004093 | DOI Listing |
Cells
December 2024
Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
Despite ongoing advancements in drug design and developments, breast cancer remains a serious and devastating disease and is ranked as the second most common illness in women. Breast cancer rates have increased significantly during the last 40 years. This necessitates the development of novel treatment techniques.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India.
Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590 010, Karnataka, India.
Indole, a fundamental heterocyclic core, has emerged as a cornerstone in the medicinal chemistry due to its diverse biological activities and structural versatility. This aromatic compound, present in natural as well as synthetic compounds, offers a versatile platform for the drug discovery. By strategically incorporating functional groups or pharmacophores, researchers can tailor indole-derivatives to target a wide range of diseases.
View Article and Find Full Text PDFBioorg Chem
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!