Loss-of-function mutations in the IKBKAP gene, which encodes IKAP (ELP1), cause familial dysautonomia (FD), with defective neuronal development and maintenance. Molecular mechanisms leading to FD are poorly understood. We demonstrate that various RNA-interference-based depletions of IKAP lead to defective adhesion and migration in several cell types, including rat primary neurons. The defects could be rescued by reintroduction of wild-type IKAP but not by FD-IKAP, a truncated form of IKAP constructed according to the mutation found in the majority of FD patients. Cytosolic IKAP co-purified with proteins involved in cell migration, including filamin A, which is also involved in neuronal migration. Immunostaining of IKAP and filamin A revealed a distinct co-localization of these two proteins in membrane ruffles. Depletion of IKAP resulted in a significant decrease in filamin A localization in membrane ruffles and defective actin cytoskeleton organization, which both could be rescued by the expression of wild-type IKAP but not by FD-IKAP. No downregulation in the protein levels of paxillin or beclin 1, which were recently described as specific transcriptional targets of IKAP, was detected. These results provide evidence for the role of the cytosolic interactions of IKAP in cell adhesion and migration, and support the notion that cell-motility deficiencies could contribute to FD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.013722 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!