Background: The proteomes of mammalian biological fluids, cells and tissues are complex and composed of proteins with a wide dynamic range. The effective way to overcome the complexity of these proteomes is to combine several fractionation steps. OFFGEL fractionation, recently developed by Agilent Technologies, provides the ability to pre-fractionate peptides into discrete liquid fractions and demonstrated high efficiency and repeatability necessary for the analysis of such complex proteomes.
Results: We evaluated OFFGEL fractionator technology to separate peptides from two complex proteomes, human secretome and human plasma, using a 24-wells device encompassing the pH range 3-10. In combination with reverse phase liquid chromatography, peptides from these two samples were separated and identified by MALDI TOF-TOF. The repartition profiles of the peptides in the different fractions were analyzed and explained by their content in charged amino acids using an algorithmic model based on the possible combinations of amino acids. We also demonstrated for the first time the compatibility of OFFGEL separation technology with the quantitative proteomic labeling technique iTRAQ allowing inclusion of this technique in complex samples comparative proteomic workflow.
Conclusion: The reported data showed that OFFGEL system provides a highly valuable tool to fractionate peptides from complex eukaryotic proteomes (plasma and secretome) and is compatible with iTRAQ labeling quantitative studies. We therefore consider peptides OFFGEL fractionation as an effective addition to our strategy and an important system for quantitative proteomics studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277393 | PMC |
http://dx.doi.org/10.1186/1477-5956-6-9 | DOI Listing |
Foods
August 2024
Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Reactive oxygen species (ROS) play a critical role in oxidative stress and cellular damage, underscoring the importance of identifying potent antioxidants. This research focuses on the antioxidant capabilities of Riceberry™-derived peptides and their protective effects against oxidative and endoplasmic reticulum (ER) stress in L929 cells. By simulating human digestion, Riceberry™ protein hydrolysate was generated, from which antioxidant peptides were isolated using OFFGEL electrophoresis and LC-MS/MS.
View Article and Find Full Text PDFAntibiotics (Basel)
February 2023
Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand.
Nonedible agricultural wastes (agricultural wastes, agro-industrial wastes, and fishery wastes) were chosen as potential sources of antimicrobial peptides and evaluated for antibacterial efficiency against human pathogens. Specifically, protein hydrolysates were first obtained by hydrolysis with pepsin. Filtrated peptides smaller than 3 kDa were then purified by C18 reversed-phase chromatography, cation exchange chromatography, and off-gel fractionation.
View Article and Find Full Text PDFMethods Mol Biol
December 2022
Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA.
The Golgi is the central organelle in the secretory pathway, essential for post-translational modifications, sorting and trafficking of secretory and membrane proteins and lipids in all eukaryotic cells. During mitosis, the mammalian Golgi membranes undergo continuous disassembly and reassembly processes which are critical for Golgi biogenesis during the cell division. To better understand the underlying molecular mechanism of this highly dynamic process, we analyzed the proteins that are in or associated with interphase and mitotic Golgi membranes using an in vitro Golgi assembly assay and quantitative proteomics.
View Article and Find Full Text PDFEXCLI J
March 2021
Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
Leukemia is the most common type of hematological malignancies. Several natural products including bioactive peptides have been explored and studied for their anti-leukemic activities. In the present study, anti-leukemic peptide, IGTLILM (IM-7), was isolated and identified from the protein hydrolysate of sesame seeds by reverse phase-solid phase extraction, off-gel fractionation and nano LC-MS/MS.
View Article and Find Full Text PDFPlanta Med
June 2021
Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
Despite the efficacy of chemotherapy, the adverse effects of chemotherapeutic drugs are considered a limitation of leukemia treatment. Therefore, a chemotherapy drug with minimal side effects is currently needed. One interesting molecule for this purpose is a bioactive peptide isolated from plants since it has less toxicity to normal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!