Download full-text PDF

Source
http://dx.doi.org/10.2165/00002018-200831030-00008DOI Listing

Publication Analysis

Top Keywords

'power' signal-detection
4
signal-detection algorithms
4
'power'
1
algorithms
1

Similar Publications

Purpose: To evaluate image quality (IQ) of for-processing (raw) and for-presentation (clinical) radiography images, under different exposure conditions and digital image post-processing algorithms, using a phantom that enables multiple detection tasks.

Methods: A modified version of the radiography phantom described in the IAEA Human Health Series No. 39 publication was constructed, incorporating six additional Aluminum (Al) targets of thicknesses both smaller and larger than the standard one.

View Article and Find Full Text PDF

κ/β-GaO Type-II Phase Heterojunction.

Adv Mater

January 2025

Advanced Semiconductor Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

Ultrawide-bandgap gallium oxide (GaO) holds immense potential for crucial applications such as solar-blind photonics and high-power electronics. Although several GaO polymorphs, i.e.

View Article and Find Full Text PDF

Self-powered dual-photoelectrode photoelectrochemical aptasensor amplified by hemin/G-quadruplex-based DNAzyme.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.

A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!