A spatial Fourier transform approach is used to study the phenomena of polarization changing and beam profile deformation of light during the Raman-Nath, acousto-optic interaction in isotropic media. Starting from the vector version of the well-known Raman-Nath interaction equation and using a spatial Fourier transform allows analytic solutions that encompass the effects of polarization changing and beam-profile deformation for the multiple scattered light to be found in the spatial-frequency domain. Two kinds of sound wave, longitudinal and shear, are assumed to be interacted with the light, whose transverse spatial profile and state of polarization are arbitrary. It is shown that, for light with an arbitrary spatial profile after interaction with the sound wave in the Raman-Nath regime, the spatial profiles of the scattered light are almost the same shape as those of the input light. For the polarization changing part, it is found that the state of polarization and the direction of rotation can alter, depending not only on the sound amplitude but also on the propagation mode of the sound wave. Simulation results are provided to confirm the validity of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.37.007496DOI Listing

Publication Analysis

Top Keywords

polarization changing
16
sound wave
12
changing beam
8
beam profile
8
profile deformation
8
deformation light
8
raman-nath acousto-optic
8
acousto-optic interaction
8
spatial fourier
8
fourier transform
8

Similar Publications

Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises.

View Article and Find Full Text PDF

On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River.

View Article and Find Full Text PDF

Energetic constraints drive the decline of a sentinel polar bear population.

Science

January 2025

Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.

Human-driven Arctic warming and resulting sea ice loss have been associated with declines in several polar bear populations. However, quantifying how individual responses to environmental change integrate and scale to influence population dynamics in polar bears has yet to be achieved. We developed an individual-based bioenergetic model and hindcast population dynamics across 42 years of observed sea ice conditions in Western Hudson Bay, a region undergoing rapid environmental change.

View Article and Find Full Text PDF

Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.

View Article and Find Full Text PDF

A post-transition state surface intersection (PTSSI) between radical and zwitterionic states that causes a bifurcation in the reaction pathway was discovered through density functional theory calculations on potential energy surfaces and ab initio molecular dynamics simulations of cycloadditions between a bicyclobutane and a triazolinedione (BCB-TAD). It was predicted that changes to the solvent polarity would enable control over the dynamic selectivity in this system; indeed, experimental evidence supported this prediction. This work not only provides new insights into an unusual type of post-transition state bifurcation, but also demonstrates how the nonstatistical dynamic effects that control selectivity for such reactions can be manipulated rationally to increase the yields of synthetically useful reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!