The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm.

Med Sci Monit

Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92350, USA.

Published: March 2008

AI Article Synopsis

  • - Researchers investigated the effects of Whole Body Vibration (WBV) at 30 Hz and 50 Hz on skin blood flow (SBF) to find if one frequency is better or if there's an optimal duration for increased SBF.
  • - Two studies were conducted with a total of 25 subjects, where both frequencies significantly increased SBF within the first minutes of vibration, reaching their peak by the fifth minute. However, there was no significant difference in effectiveness between the two frequencies.
  • - Results suggested that while both frequencies increase SBF, 50 Hz is preferable as it led to sustained higher SBF during recovery, indicating potential benefits for populations with poor circulation, such as diabetics.

Article Abstract

Background: Recently, researchers have demonstrated that Whole Body Vibration (WBV) results in significant increases in skin blood flow (SBF). No study has determined if a specific frequency or a specific duration is better at optimizing SBF.

Material/methods: Two studies were conducted to determine, 1) if there is a difference in SBF due to passive vibration of the forearm at 30 Hz vs. 50 Hz, 2) if one frequency is superior, and 3) if there is an optimal duration. In the first study, 18 subjects (mean age 20.3+/-2.9 years) were randomly placed into a 30 Hz or 50 Hz vibration group, and in the second, seven subjects (mean age 23.3+/-3.8 years) participated in both 30 and 50 Hz vibration. Each subject's arm was passively vibrated for 10 minutes. SBF was examined during vibration and for 15 minutes of recovery.

Results: Both frequencies produced significant increases in SBF (p<0.05) within the first four minutes of vibration. Peak SBFs were obtained by the fifth minute. SBF remained high for minutes 4 through 10 of vibration in the second study. In the first study, SBF remained high for minutes 4 through 9. During recovery, 30 Hz vibration produced SBFs below baseline values while 50 Hz SBFs remained above baseline. Statistically one frequency was not superior to the other.

Conclusions: Five minutes of 30 Hz or 50 Hz vibration produced significant increases in SBF. Clinically, 50 Hz has additional benefits because SBF increased more rapidly and did not result in vasoconstriction during the recovery period. Future studies should be done to determine if these increases in SBF could be of benefit to populations with low circulation such as those with diabetes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

passive vibration
8
skin blood
8
blood flow
8
subjects age
8
vibration
6
vibration duration
4
duration vibration
4
vibration skin
4
flow arm
4
arm background
4

Similar Publications

: Increasing exercise intensity and performance output with superimposed vibration gains interest, especially in high-performance training. However, the additional benefit of vibration in passive stretching exercises and its mechanisms remain unclarified. : Passive stretching with (ST+V) and without (ST) vibration (20 Hz) was performed in male Olympic youth skiing athletes ( = 8, age: 17.

View Article and Find Full Text PDF

Road surface roughness is the cause of vehicle vibration, which is considered a system disturbance. Previous studies on suspension system control often ignore the influence of disturbances while designing the controller, leading to system performance degradation under severe vibration conditions. In this work, we propose a control method to improve active suspension performance that reduces vehicle vibration by eliminating the influence of road disturbances.

View Article and Find Full Text PDF

Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).

View Article and Find Full Text PDF

Space payloads in orbit are vulnerable to small vibrations from satellite platforms, which can degrade their performance. Traditional methods typically involve installing a passive vibration isolation system between the platform and the payload. However, such systems are usually effective only for high-frequency, large-amplitude vibrations and perform poorly in isolating low-frequency vibrations and resonances below 10 Hz.

View Article and Find Full Text PDF

The propulsive fins of ray-finned fish are used for large scale locomotion and fine maneuvering, yet also provide sensory feedback regarding hydrodynamic loading and the surrounding environment. This information is gathered via nerve cells in the webbing between their fin rays. A similar bioinspired system that can gather force feedback from fin motion could enable valuable insight into robotic underwater locomotion improving swimming efficiency and orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!