The aim of this study is to investigate absorption-promoting mechanism of enhancers and the transport pathway of large hydrophilous molecular across rat nasal epithelium by electron spin resonance (ESR) and confocal laser scanning microscopy (CLSM) technologies. In the experiment, recombinant hirudin-2 (rHV2) was chosen as a large hydrophilic molecular model drug. After nasal administration in rats the bioavailability of rHV2 with or without various enhancers was compared. The effects of enhancers on membrane lipid fluidity and protein conformation were measured with 5-deoxyl-stearic acid (5-DSA), 16-deoxyl-stearic acid (16-DSA) and 3-maleidoproxyl (MSL) labeling ESR. The effects of enhancers on cytoskeletal F-actin of rat nasal epithelium and FITC-rHV2 transport pathway across rat nasal epithelium were performed by CLSM combined with fluorescence labeling. 0.5% Chitosan (CS), 5% hydroxyl-propyl-beta-cyclodextrin ( HP-beta-CD) and 1% ammonium glycyrrhizinate (AMGZ) were all able to significantly increase the nasal absorption of rHV2. CS could result in the paracellular pathway transport of FITC-rHV2 which seemed related to a transient effect on tight junctions. HP-beta-CD could cause paracellular and transcellular route transport of FITC-rHV2 by influencing upon membrane protein as well as lipid fluidity. AMGZ seemed to enhance the transcellular route transport of FITC-rHV2, and could exert some influence on membrane protein but not on lipid fluidity. So how it brought out this result needs further research. Present experiment may become a useful reference for promoting mechanism of enhancers and the transport pathway of large hydrophilic molecular across nasal epithelium research.
Download full-text PDF |
Source |
---|
Nat Immunol
January 2025
Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Clin Otolaryngol
January 2025
School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Introduction: The nasoseptal flap (NSF) has become a widely favoured choice for reconstructing skull base defects following the endoscopic endonasal approach (EEA). However, the exposed septal cartilage and bone at the donor site often require an extended duration for secondary healing. This study investigated whether the free middle turbinate (MT) mucosa grafting at the septal donor site could mitigate post-operative nasal morbidity.
View Article and Find Full Text PDFCureus
December 2024
College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU.
Chronic rhinosinusitis (CR) is a persistent inflammation of the nasal mucosa and paranasal sinuses. Endoscopic sinus surgery (ESS) is a procedure that improves sinus drainage and ventilation. Despite advancements in ESS, additional corrective procedures post-ESS are often needed.
View Article and Find Full Text PDFAm J Ophthalmol Case Rep
March 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Purpose: To report a case of bilateral choroidal osteoma successfully treated with subscleral sclerectomy for secondary serous retinal detachment (SRD).
Observations: A 52-year-old Japanese woman first diagnosed with Vogt-Koyanagi-Harada disease and treated with steroids for 9 years was referred to our clinic. SRD in both eyes recurred frequently and was uncontrolled with adalimumab subcutaneous injections and oral cyclosporine, in addition to steroids.
BMC Oral Health
January 2025
Affiliated Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China.
Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).
Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!